Abstract. Obtaining temperature data from the mid-Piacenzian warm period (ca. 3 Ma, Pliocene epoch) is a key factor in outlining the impact of projected anthropogenic climate change. The mid-Piacenzian warm period was a high-CO2 world with a paleogeography similar to modern times. The time interval has been used to validate and improve climate model retrodictions, which in turn enables assessing the predictive strength of these models. Validating climate models requires a large array of robust proxy data. Here, we increase the potential of this proxy database by showing that the extinct tellinid bivalve Angulus benedeni benedeni can be used for stable isotope-based temperature reconstructions. This species is found in the Pliocene sediments of the southern North Sea basin. Oxygen isotope and carbonate clumped isotope measurements on the shell of A. benedeni benedeni resulted in a mean annual temperature reconstruction of 13.5±3.8 °C. This is 2.5 °C warmer than today, 3.5 °C warmer than the pre-industrial North Sea, and in line with global Pliocene temperature estimates of +2–4 °C compared to the pre-industrial climate. Limited amounts of clumped isotope data hindered determining summer and winter temperatures, but the oxygen isotope record shows that the growth band spacing of A. benedeni benedeni allows for sampling at a resolution of 2–3 months. The species could live for up to a decade, and therefore has the potential to be used for multiannual seasonality reconstructions. The pristine nature of the aragonitic shell material was verified through electron backscatter diffraction analysis (EBSD), and backed by light microscopy, X-ray diffraction, and X-ray fluorescence. The various microstructures as obtained from the EBSD maps have been described, and they provide a template of pristine A. benedeni benedeni material to which potentially altered shells may be compared. The bivalve A. benedeni benedeni is suitable for high resolution isotope-based paleoclimatic reconstruction and it can be used to unravel the marine conditions in the Pliocene southern North Sea basin at a seasonal scale, yielding enhanced insights into imminent western European climate conditions.
Abstract. Bivalves record seasonal environmental changes in their shells, making them excellent climate archives. However, not every bivalve can be used for this end. The shells have to grow fast enough so that micrometre- to millimetre-sampling can resolve sub-annual changes. Here, we investigate whether the bivalve Angulus benedeni benedeni is suitable as a climate archive. For this, we use ca. 3-million-year-old specimens from the Piacenzian collected from a temporary outcrop in the Port of Antwerp area (Belgium). The subspecies is common in Pliocene North Sea basin deposits, but its lineage dates back to the late Oligocene and has therefore great potential as a high-resolution archive. A detailed assessment of the preservation of the shell material by micro-X-ray fluorescence, X-ray diffraction, and electron backscatter diffraction reveals that it is pristine and not affected by diagenetic processes. Oxygen isotope analysis and microscopy indicate that the species had a longevity of up to a decade or more and, importantly, that it grew fast and large enough so that seasonally resolved records across multiple years were obtainable from it. Clumped isotope analysis revealed a mean annual temperature of 13.5 ± 3.8 ∘C. The subspecies likely experienced slower growth during winter and thus may not have recorded temperatures year-round. This reconstructed mean annual temperature is 3.5 ∘C warmer than the pre-industrial North Sea and in line with proxy and modelling data for this stratigraphic interval, further solidifying A. benedeni benedeni's use as a climate recorder. Our exploratory study thus reveals that Angulus benedeni benedeni fossils are indeed excellent climate archives, holding the potential to provide insight into the seasonality of several major climate events of the past ∼ 25 million years in northwestern Europe.
<p>The Late Devonian oceans were susceptible to the development of anoxic conditions, as evidenced by repeated widespread organic-rich shale deposition. Understanding how these anoxic facies were deposited will provide insight into Devonian climatic modes. To this end, we constructed a high-resolution cyclostratigraphic model based on portable XRF-generated elemental ratio records from a Frasnian-Famennian (~372 Ma) black shale section. These black shales are associated with the Kellwasser Crisis, one of the largest mass extinctions of the Phanerozoic, which is not fully understood to this day. The studied section at Winsenberg is located in the Rhenish Massif in Germany and represents a basinal setting at southern low paleolatitudes. Spectral analysis was carried out on the Si/Ca ratios generated by XRF, which is interpreted as the detrital (distal) vs carbonaceous (local) input. The resulting astrochronology suggests a duration of ca. 1 Myr from the base of the Lower Kellwasser to the F-F boundary at the top of the Upper Kellwasser level. This corresponds to an average sedimentation rate of 0.9 cm/kyr. Both the Lower and Upper Kellwasser shales occur at the onset of a 405 kyr eccentricity cycle. We further interpret the Ti/Al record as a riverine runoff signal, as Ti is associated with the coarse-grained fraction, and K/Al as a chemical weathering signal, as K is leached easier than Al. Both tuned records exhibit eccentricity-modulated precession cycles. On precession and short eccentricity timescales, Ti/Al and K/Al are positively correlated, suggesting an orbitally forced wet/dry monsoonal climate in the region where the section was deposited. On longer timescales, the weathering signal becomes decoupled from the riverine runoff signal, highlighting that K/Al (chemical weathering) decreased even during wetter periods. This decoupling is linked to soil maturation in the hinterland, as potassium leaching from mature soils became increasingly limited. Soil build-up and maturation forms a potential mechanism for nutrient storage and subsequent release into the ocean, potentially triggering eutrophication and anoxia.</p>
Abstract. Repeated carbon isotope excursions and widespread organic-rich shale deposition mark the Middle and Late Devonian series. Various explanations such as extensive volcanism and land plant evolution have been given for these perturbations and the general sensitivity of the Devonian to oceanic anoxia, but their repeated nature suggests that astronomical forcing may have controlled their timing. Here, a cyclostratigraphic study of the Kellwasser Crisis at the Frasnian-Famennian stage boundary (ca. 372 Ma) is carried out. The Kellwasser Crisis was one of the most ecologically impactful of the Devonian perturbations and is ranked among the ‘Big Five’ Phanerozoic mass extinctions. The studied site is the Winsenberg Road Cut section in the Rhenish Massif, Germany, which represents a quiet tropical shelf basin setting. Centimetre-scale elemental records, generated by portable X-Ray scanning, allow for testing of the hypothesis that a 2.4 Myr eccentricity node preceded the Upper Kellwasser event. The study’s results are supportive of this hypothesis. We find enhanced chemical weathering (K2O/Al2O3) during the period leading up to the Upper Kellwasser, and a peak in distal detrital input (SiO2/CaO) and riverine runoff (TiO2/Al2O3) just prior to the start of the Upper Kellwasser. We interpret this pattern as the long-term eccentricity minimum facilitating excessive regolith build-up in the absence of strong seasonal contrasts. The Earth’s system coming out of this node would have rapidly intensified the hydrological cycle, causing these nutrient-rich regoliths to be eroded and washed away to the oceans where they resulted in eutrophication and anoxia. An astronomical control on regional climate is observed beyond this single crisis. Wet-dry cycles were paced by 405-kyr eccentricity, with both the Lower and Upper Kellwasser events taking place during comparatively drier times. A precessional-forced monsoonal climate system prevailed on shorter timescales. Intensification of this monsoonal system following the node may have caused the widespread regolith erosion. We estimate the total duration of the Kellwasser Crisis at ca. 900 kyr, with the individual events lasting for ca. 250 and 100 kyr, respectively. If astronomical control indeed operated via regolith build up in monsoonal climates, land plants may have played an important role. Not by certain evolutionary steps triggering specific perturbations, but by permanently strengthening the climatic response to orbital forcing via soil development – creating soils thick enough to meaningfully respond to orbital forcing – and intensifying the hydrological cycle.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.