Glioblastoma is an aggressive tumor that is associated with distinctive infiltrating microglia/macrophages populations. Previous studies demonstrated that chlorogenic acid (5-caffeoylquinic acid, CHA), a phenolic compound with low molecular weight, has an anti-tumor effect in multiple malignant tumors. In the present study, we focused on the macrophage polarization to investigate the molecular mechanisms behind the anti-glioma response of CHA in vitro and in vivo. We found that CHA treatment increased the expression of M1 markers induced by LPS/IFNγ, including iNOS, MHC II (I-A/I-E subregions) and CD11c, and reduced the expression of M2 markers Arg and CD206 induced by IL-4, resulting in promoting the production of apoptotic-like cancer cells and inhibiting the growth of tumor cells by co-culture experiments. The activations of STAT1 and STAT6, which are two crucial signaling events in M1 and M2-polarization, were significantly promoted and suppressed by CHA in macrophages, respectively. Furthermore, In G422 xenograft mice, CHA increased the proportion of CD11c-positive M1 macrophages and decreased the distribution of CD206-positive M2 macrophages in tumor tissue, consistent with the reduction of tumor weight observed in CHA-treated mice. Overall these findings indicated CHA as a potential therapeutic approach to reduce glioma growth through promoting M1-polarized macrophage and inhibiting M2 phenotypic macrophage.
Rationale: Inducing cancer differentiation is a promising approach to treat cancer. Here, we identified chlorogenic acid (CA), a potential differentiation inducer, for cancer therapy, and elucidated the molecular mechanisms underlying its differentiation-inducing effects on cancer cells.Methods: Cancer cell differentiation was investigated by measuring malignant behavior, including growth rate, invasion/migration, morphological change, maturation, and ATP production. Gene expression was analyzed by microarray analysis, qRT-PCR, and protein measurement, and molecular biology techniques were employed for mechanistic studies. LC/MS analysis was the method of choice for chemical detection. Finally, the anticancer effect of CA was evaluated both in vitro and in vivo.Results: Cancer cells treated with CA showed reduced proliferation rate, migration/invasion ability, and mitochondrial ATP production. Treating cancer cells with CA resulted in elevated SUMO1 expression through acting on its 3'UTR and stabilizing the mRNA. The increased SUMO1 caused c-Myc sumoylation, miR-17 family downregulation, and p21 upregulation leading to G0/G1 arrest and maturation phenotype. CA altered the expression of differentiation-related genes in cancer cells but not in normal cells. It inhibited hepatoma and lung cancer growth in tumor-bearing mice and prevented new tumor development in naïve mice. In glioma cells, CA increased expression of specific differentiation biomarkers Tuj1 and GFAP inducing differentiation and reducing sphere formation. The therapeutic efficacy of CA in glioma cells was comparable to that of temozolomide. CA was detectable both in the blood and brain when administered intraperitoneally in animals. Most importantly, CA was safe even at very high doses.Conclusion: CA might be a safe and effective differentiation-inducer for cancer therapy. “Educating” cancer cells to differentiate, rather than killing them, could be a novel therapeutic strategy for cancer.
Polypharmacology is a promising paradigm in modern drug discovery. Herein, we have discovered a series of novel PI3K and HDAC dual inhibitors in which the hydroxamic acid moiety as the zinc binding functional group was introduced to a quinazoline-based PI3K pharmacophore through an appropriate linker. Systematic structure–activity relationship studies resulted in lead compounds 23 and 36 that simultaneously inhibited PI3K and HDAC with nanomolar potencies and demonstrated favorable antiproliferative activities. Compounds 23 and 36 efficiently modulated the expression of p-AKT and Ac-H3, arrested the cell cycle, and induced apoptosis in HCT116 cancer cells. Following pharmacokinetic studies, 23 was further evaluated in HCT116 and HGC-27 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 45.8% (po, 150 mg/kg) and 62.6% (ip, 30 mg/kg), respectively. Overall, this work shows promise in discovering new anticancer therapeutics by the approach of simultaneously targeting PI3K and HDAC pathways with a single molecule.
Effective and safe pharmacological interventions for hyperlipidemia remains badly needed. By incorporating the key pharmacophore of fibrates into the natural scaffold of resveratrol, a novel structural compound ZBH was constructed. In present study, we found ZBH reserved approximately one third of the sirtuin 1 (SIRT1) activation produced by resveratrol at in-vitro enzyme activity assay, directly bound to and activated all three peroxisome proliferator-activated receptor (PPAR) subtypes respectively in PPAR binding and transactivation assays. Moreover, ZBH (EC50, 1.75 µM) activate PPARα 21 fold more efficiently than the well-known PPAR pan agonist bezafibrate (EC50, 37.37 µM) in the cellular transactivation assays. In the high fat diet induced hyperlipidemic hamsters, 5-week treatment with ZBH significantly lowered serum triglyceride, total cholesterol, LDL-C, FFA, hyperinsulinemia, and improved insulin sensitivity more potently than bezafibrate. Meanwhile, serum transaminases, creatine phosphokinase and CREA levels were found not altered by ZBH intervention. Mechanism study indicated ZBH promoted the expression of PPARα target genes and SIRT1 mRNA. Hepatic lipogenesis was markedly decreased via down-regulation of lipogenic genes, and fatty acid uptake and oxidation was simultaneously increased in the liver and skeletal muscle via up-regulation of lipolysis genes. Glucose uptake and utilization was also significantly promoted in skeletal muscle. These results suggested that ZBH significantly lowered hyperlipidemia and ameliorated insulin resistance more efficiently than bezafibrate in the hyperlipidemic hamsters primarily by activating of PPARα, and SIRT1 promotion and activation. ZBH thus presents a potential new agent to combat hyperlipidemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.