MINIMIZING ENERGY COSTS FOR GEOGRAPHICALLY DISTRIBUTED
HETEROGENEOUS DATA CENTERSThe recent proliferation and associated high electricity costs of distributed data centers have motivated researchers to study energy-cost minimization at the geo-distributed level. The development of time-of-use (TOU) electricity pricing models and renewable energy source models has provided the means for researchers to reduce these high energy costs through intelligent geographical workload distribution. However, neglecting important considerations such as data center cooling power, interference effects from task co-location in servers, net-metering, and peak demand pricing of electricity has led to sub-optimal results in prior work because these factors have a significant impact on energy costs and performance. In this thesis, we propose a set of workload management techniques that take a holistic approach to the energy minimization problem for geodistributed data centers. Our approach considers detailed data center cooling power, co-location interference, TOU electricity pricing, renewable energy, net metering, and peak demand pricing distribution models. We demonstrate the value of utilizing such information by comparing against geo-distributed workload management techniques that possess varying amounts of system information. Our simulation results indicate that our best proposed technique is able to achieve a 61% (on average) cost reduction compared to state-of-the-art prior work.ii ACKNOWLEDGMENTS I would like to express my special appreciation to my advisors, Prof. Sudeep Pasricha, Prof.
Cloud service providers are distributing data centers geographically to minimize energy costs through intelligent workload distribution. With increasing data volumes in emerging cloud workloads, it is critical to factor in the network costs for transferring workloads across data centers. For geo-distributed data centers, many researchers have been exploring strategies for energy cost minimization and intelligent inter-data-center workload distribution separately. However, prior work does not comprehensively and simultaneously consider data center energy costs, data transfer costs, and data center queueing delay. In this paper, we propose a novel game theory-based workload management framework that takes a holistic approach to the cloud operating cost minimization problem by making intelligent scheduling decisions aware of data transfer costs and the data center queueing delay. Our framework performs intelligent workload management that considers heterogeneity in data center compute capability, cooling power, interference effects from task co-location in servers, time-of-use electricity pricing, renewable energy, net metering, peak demand pricing distribution, and network pricing. Our simulations show that the proposed game-theoretic technique can minimize the cloud operating cost more effectively than existing approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.