-Purpose: Monoclonal antibodies (mAbs) are commonly administered via subcutaneous (SC) route. However, bioavailability is often reduced after SC administration. In addition, the sequential transfer of mAbs through the SC tissue and lymphatic system is not completely understood. Therefore, major objectives of this study were a) To understand absorption of mAbs via the lymphatic system after SC administration using physiologically based pharmacokinetic (PBPK) modeling, and b) to demonstrate application of the model for prediction of SC pharmacokinetics (PK) of mAbs. Methods: A minimal PBPK model was constructed using various physiological parameters related to the SC injection site and lymphatic system. The remainder of the body organs were represented using a 2-compartment model (central and peripheral compartments), with parameters derived from available intravenous (IV) PK data. The IV and SC clinical PK data of a total of 10 mAbs were obtained from literature. The SC PK data were used to estimate the lymphatic trunk-lymph node (LN) clearance. Results: The mean estimated lymphatic trunk-LN clearance obtained from 37 SC PK profiles of mAbs was 0.00213 L/h (0.001332 to 0.002928, 95% confidence intervals). The estimated lymphatic trunk-LN clearance was greater for the mAbs with higher isoelectric point (pI). In addition, the estimated clearance increased with decrease in the bioavailability. Conclusion: The minimal PBPK model identified SC injection site lymph flow, afferent and efferent lymph flows, and volumes associated with the SC injection site, lymphatic capillaries and lymphatic trunk-LN as important physiological parameters governing the absorption of mAbs after SC administration. The model may be used to predict PK of mAbs using the relationship of lymphatic trunk-LN clearance and the pI. In addition, the model can be used as a bottom platform to incorporate SC and lymphatic in vitro clearance data for mAb PK prediction in the future. __________________________________________________________________________________________
A total of 26 metabolites of amiodarone were detected in the investigated in vitro and in vivo matrices. The suspected ortho-diquinone metabolite was one of them. The formation of the same might be an added reason for the hepatotoxicity shown by the drug.
Keywords:intradermal subcutaneous therapeutic proteins PBPK modeling reactive oxygen species proteolysis oxidation lymphatic system a b s t r a c tThe intradermal (ID) and subcutaneous (SC) routes are commonly used for therapeutic proteins (TPs) and vaccines; however, the bioavailability of TPs is typically less than small molecule drugs given via the same routes. Proteolytic enzymes in the dermal, SC, and lymphatic tissues may be responsible for the loss of TPs. In addition, the TPs may be exposed to reactive oxygen species generated in the SC tissue and the lymphatic system in response to injection-related trauma and impurities within the formulation. The reactive oxygen species can oxidize TPs to alter their efficacy and immunogenicity potential. Mechanistic understandings of the dominant proteolysis and oxidative routes are useful in the drug discovery process, formulation development, and to assess the potential for immunogenicity and altered pharmacokinetics (PK). Furthermore, in vitro tools representing the ID or SC and lymphatic system can be used to evaluate the extent of proteolysis of the TPs after the injection and before systemic entry. The in vitro clearance data may be included in physiologically based pharmacokinetic models for improved PK predictions. In this review, we have summarized various physiological factors responsible for proteolysis and oxidation of TPs after ID and SC administration.
Drug‐metabolizing enzymes (DMEs) are primarily expressed in the liver but their role in the extrahepatic tissues such as gastrointestinal tract (GIT), pulmonary, excretory, nervous, cardiovascular system, and skin cannot be neglected. Generally, the expression of DMEs in extrahepatic tissues is quantitatively lower than that in the liver, but there are a few enzymes such as CYP1A1, CYP1B1, CYP2F1, and CYP2U1 that are more abundant in extrahepatic organs. As many extrahepatic organs are portals for administered drugs, DMEs expressed in these organs can be responsible for significant metabolism, leading to first‐pass effects and lower bioavailability. Extrahepatic DMEs are also involved in bioactivation of prodrugs and formation of reactive metabolites that may interact with cellular components, resulting in organ‐specific toxicity. Activity and expression of extrahepatic DMEs is often altered by coadministered drugs, leading to drug–drug interactions. Expression of DMEs in living beings affected by a host of environmental and genetic factors such as genetic polymorphism, age, gender, pathophysiological conditions, inborn errors in metabolism, food habits, and environmental pollutants, contributing to varied drug effects and idiosyncratic toxicities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.