We have publicly released a blinded mix of simulated SNe, with types (Ia, Ib, Ic, II) selected in proportion to their expected rate. The simulation is realized in the griz filters of the Dark Energy Survey (DES) with realistic observing conditions (sky noise, point spread function and atmospheric transparency) based on years of recorded conditions at the DES site. Simulations of non-Ia type SNe are based on spectroscopically confirmed light curves that include unpublished non-Ia samples donated from the Carnegie Supernova Project (CSP), the Supernova Legacy Survey (SNLS), and the Sloan Digital Sky Survey-II (SDSS-II). We challenge scientists to run their classification algorithms and report a type for each SN. A spectroscopically confirmed subset is provided for training. The goals of this challenge are to (1) learn the relative strengths and weaknesses of the different classification algorithms, (2) use the results to improve classification algorithms, and ( 3) understand what spectroscopically confirmed sub-sets are needed to properly train these algorithms. The challenge is available at www.hep.anl.gov/SNchallenge, and the due date for classifications is May 1, 2010.
Detection and classification of transients in data from gravitational wave detectors are crucial for efficient searches for true astrophysical events and identification of noise sources. We present a hybrid method for classification of short duration transients seen in gravitational wave data using both supervised and unsupervised machine learning techniques. To train the classifiers we use the relative wavelet energy and the corresponding entropy obtained by applying one-dimensional wavelet decomposition on the data. The prediction accuracy of the trained classifier on nine simulated classes of gravitational wave transients and also LIGO's sixth science run hardware injections are reported. Targeted searches for a couple of known classes of non-astrophysical signals in the first observational run of Advanced LIGO data are also presented. The ability to accurately identify transient classes using minimal training samples makes the proposed method a useful tool for LIGO detector characterization as well as searches for short duration gravitational wave signals.
We use automated surface photometry and pattern classification techniques to morphologically classify galaxies. The two-dimensional light distribution of a galaxy is reconstructed using Fourier series fits to azimuthal profiles computed in concentric elliptical annuli centered on the galaxy. Both the phase and amplitude of each Fourier component have been studied as a function of radial bin number for a large collection of galaxy images using principal component analysis. We find that up to 90 percent of the variance in many of these Fourier profiles may be characterized in as few as 3 principal components and their use substantially reduces the dimensionality of the classification problem. We use supervised learning methods in the form of artificial neural networks to train galaxy classifiers that detect morphological bars at the 85-90 percent confidence level and can identify the Hubble type with a 1-sigma scatter of 1.5 steps on the 16-step stage axis of the revised Hubble system. Finally, we systematically characterize the adverse effects of decreasing resolution and S/N on the quality of morphological information predicted by these classifiers.Comment: Accepted to Astrophysical Journal, 43 pages, 12 figure
Additional information: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-pro t purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
We present an automated method for the detection of bar structure in optical images of galaxies using a deep convolutional neural network which is easy to use and provides good accuracy. In our study we use a sample of 9346 galaxies in the redshift range 0.009-0.2 from the Sloan Digital Sky Survey, which has 3864 barred galaxies, the rest being unbarred. We reach a top precision of 94 per cent in identifying bars in galaxies using the trained network. This accuracy matches the accuracy reached by human experts on the same data without additional information about the images. Since Deep Convolutional Neural Networks can be scaled to handle large volumes of data, the method is expected to have great relevance in an era where astronomy data is rapidly increasing in terms of volume, variety, volatility and velocity along with other V's that characterize big data. With the trained model we have constructed a catalogue of barred galaxies from SDSS and made it available online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.