The application of paper–aluminum–plastic packaging has been widely adopted in various fields such as the food and medical industries, owing to its exceptional preservation and obstruction properties. Nonetheless, the recycling process for paper and aluminum from this packaging type typically involves water pulping and solvent separation. The resulting residual waste, commonly known as multi-plastic waste (PMW), poses significant challenges in terms of separation and recycling. In this research article, we propose a solution for the recycling of PMW using solid-state shear milling (S3M). This process utilizes powerful three-dimensional shear force to achieve pulverization and excellent dispersion of multicomponent polymers, all while maintaining ambient temperature conditions. The thermoplastic processability of milled PMW powder was improved. The results indicate that a significant reduction in the the average particle size of PMW from 700 μm to 226 μm after 10 milling cycles, as evidenced by both a particle size analyzer and SEM. Furthermore, S3M processing leads to a good dispersion of PMW domains, as confirmed by the reduction in domain size from 9.64 μm to 2.65 μm. DSC and DMA reveal excellent compatibility between the components of the composite, resulting in improved mechanical properties such as tensile stress (from 14.03 MPa to 22.02 MPa) and unnotched impact strength (from 3.26 KJ/m2 to 4.82 KJ/m2). The findings suggest that S3M technology could be an effective and sustainable method for recycling PMW without any separation process, with promising industrial application.
Fiber-reinforced epoxy materials have the advantages of light weight, high strength and designability, which are widely used in high-technology fields. In this paper, triangular poly (vinyl alcohol) (PVA) fibers prepared by melt spinning were used for the first time in reinforcing and toughening epoxy resins. Based on intermolecular complexation and plasticization, the triangular PVA fibers were successfully prepared via melt spinning and hot drawing. The thermal properties, crystallinity, morphology and mechanical properties of the triangular fibers with different draw ratios were characterized by DSC, FTIR, XRD, SEM and tensile testing. The results show that the comprehensive performance of the triangular fibers increased with the increase in the draw ratio. The tensile strength of triangular fibers increased from 0.3 to 4.22 cN/dtex. Then, the triangular PVA fiber and circular PVA fiber-reinforced and toughened epoxy materials were prepared, respectively. The mechanical properties of triangular PVA fiber/epoxy composites were higher than that of circular fiber-reinforced and toughened epoxy materials. Furthermore, the single-fiber pull-out test was used to analyze the interface capability of fibers and epoxy. The pull-out force of the circular fiber was 1.24 N, while that of the triangular fiber was 2.64 N. The specific surface area of the triangular PVA fiber was larger than that of the circular PVA fiber, which better made its contact with epoxy and was not easily pulled out. Experiments prove that triangular PVA fiber is an ideal material for strengthening and toughening epoxy resin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.