Research Summary
Lead-Free SolderThe impact reliability of solder joints in electronic packages is critical to the lifetime of electronic products, especially those portable devices using area array packages such as ball-grid array (BGA) and chip-scale packages (CSP). Currently, SnAgCu (SAC) solders are most widely used for lead-free applications. However, BGA and CSP solder joints using SAC alloys are fragile and prone to premature interfacial failure, especially under shock loading. To further enhance impact reliability, a family of SAC alloys doped with a small amount of additives such as Mn, Ce, Ti, Bi, and Y was developed. The effects of doping elements on drop test performance, creep resistance, and microstructure of the solder joints were investigated, and the solder joints made with the modifi ed alloys exhibited signifi cantly higher impact reliability.
SAC-Ti alloys exhibited significantly improved drop test BOA coupon performance over not only SAC alloys, but also 63Sn37Pb for .... ENIG/OSP, NiAu/OSP, and OSP/OSP surface finish systems. ..........The superior performance is attributed to (1) the increased grain size and dendrite size, therefore reduced hardness of solder, (2) inclusion of Ti in the IMC layer, and (3) reduced IMC layer thickness. DSC data indicate that the melting temperature and range were not affected by Ti, but the 0O undercooling was almost completely suppressed. The creep properties of SAC-Ti alloy were comparable with those of O s tr SAC alloy, strongly suggesting the gain in drop test substrate performance was not achieved by compromising the thermal fatigue performance. SAC-Mn alloys were also found to outperform SAC alloys and Sn63 for the X/OSP finish combinations studied. In general, SAC-Ti performed equally to or better than SAC-Mn alloys.
With the rapid development of microelectronics and nanoelectronics, Moore law has significantly slowed down and More than Moore based system in packaging (SiP) is expected to be more and more important, at least for next one to two decades. Mechanical behaviors of interconnect materials such as solders are critical for yield in processes and reliability in testing and operation. Based on the framework of crystal plastic theory and continuum damage mechanics, an anisotropic constitutive model coupled with damage was developed to describe the deformation behaviors of Sn-rich solder. In the proposed model, the inelastic shear rate function was presented by hyperbolic sinusoidal form and power law form. For the damage evolution law, the total shear strain was chosen as the damage function variable. The proposed model was implemented into the general finite element software ABAQUS by forward Euler integration procedure. Some simulation examples were performed to verify the proposed model by comparing the simulation results with the experiments at uniaxial tensile conditions with SnAgCuSb solder chosen as the Sn-rich solder. The tensile stress-strain curves of the simulation results agreed well with the experiments at small strain under different temperatures and strain rates. The simulated stress-rupture stages showed reasonable accuracy with the experiments under four representative tensile conditions. Different tensile stress-strain curves of single grains with orientation of (0-0-0)°, (0-45-0)°, and (0-90-0)° were obtained under the same loading conditions, with an inverse relationship between the tensile strength and elongation. This relationship was in accordance with a referable literature. All these results indicate that the proposed model can describe the deformation behaviors of SnAgCuSb solder well under the tensile conditions in consideration of the mechanical anisotropy and the damage evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.