The present study investigated the association between ghrelin levels and the cardiac function and malnutrition of dialysis patients. The aim was to examine the conducive use of exogenous ghrelin to improve the malnutrition, protect the cardiovascular function with dialysis patients in the future. The study included 30 continuous ambulatory peritoneal dialysis (CAPD) patients and 30 hemodialysis (HD) patients undertaking treatment between March 2013 and March 2014. The control group included a total of 30 healthy physical examinees. The plasma ghrelin levels were measured by the enzyme-linked immunosorbent assay to collect the clinical materials and biochemical parameters. The plasma ghrelin levels were 4.28±1.07, 4.63±1.08 and 2.00±0.48 ng/ml in the CAPD, HD and control groups, respectively, and statistical significance was identified between the three groups; F=75.106, P<0.0001. The plasma ghrelin levels in the CAPD group were positively correlated with left ventricular ejection fraction (LVEF) (r=0.506, P=0.004) and were negatively correlated with body mass index (BMI) (r=−0.556, P=0.001). The plasma ghrelin levels in the CAPD and HD groups were positively correlated with serum creatinine (Scr) and blood urea nitrogen (BUN). In conclusion, the plasma ghrelin levels of patients in the CAPD and HD groups were higher compared to those of the control group, which demonstrated that dialysis patients could not effectively remove the plasma ghrelin. The present study found that the plasma ghrelin levels were positively correlated with LVEF, and high levels of ghrelin will exhibit protective effects on the cardiovascular function of CAPD patients. Plasma ghrelin levels were positively correlated with Scr and BUN levels in CAPD and HD patients, and were negatively correlated with BMI in CAPD patients, which showed that ghrelin was correlated with malnutrition of dialysis patients.
Systemic administration of platinum-based drugs has obvious limitations in the treatment of advanced bladder cancer (BC) owing to lower tumor accumulation and uncontrolled release of chemotherapeutics. There is an urgent need for advanced strategies to overcome the current limitations of platinum-based chemotherapy, to achieve maximal therapeutic outcomes with reduced side effects. In this study, self-polymerized platinum (II)-polydopamine nanocomplexes (PtPDs) were tailored for efficient chemo-photoimmunotherapy of BC. PtPDs with high Pt loading content (11.3%) were degradable under the combination of a reductive tumor microenvironment and near-infrared (NIR) light irradiation, thus controlling the release of Pt ions to achieve efficient chemotherapy. In addition, polydopamine promoted stronger photothermal effects to supplement platinum-based chemotherapy. Consequently, PtPDs provided effective chemo-photothermal therapy of MB49 BC in vitro and in vivo, strengthening the immunogenic cell death (ICD) effect and robust anti-tumoral immunity response. When combined with a PD-1 checkpoint blockade, PtPD-based photochemotherapy evoked systemic immune responses that completely suppressed primary and distant tumor growth without inducing systemic toxicities. Our work provides a highly versatile approach through metal-dopamine self-polymerization for the precise delivery of metal-based chemotherapeutic drugs, and may serve as a promising nanomedicine for efficient and safe platinum-based chemotherapy for BC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.