Near-field aeroacoustic imaging has been the focus of great attentions of researchers and engineers in aeroacoustic source localization and power estimation for decades. Recently the deconvolution and regularization methods have greatly improved spatial resolution of the beamforming methods. But neither are they robust to background noises in the low Signal-to-Noise Ratio (SNR) situation, nor do they provide a wide dynamic range of power estimation. In this paper, we first propose an improved forward model of aeroacoustic power propagation, in which, we consider background noises and forward model uncertainty for the robustness. To solve the inverse problem, we then propose a robust Bayesian super-resolution approach via sparsity enforcing a priori. The sparse prior of source powers can be modeled by double exponential distribution, which can improve the spatial resolution and promote wide dynamic range of source powers. Both the hyperparameters and source powers can be alternatively estimated by the Bayesian inference approach based on the joint Maximum A Priori optimization. Finally our Bayesian approach is compared with some of the state-of-the-art methods on simulated, real and hybrid data. The main advantages of our approach are of robustness to noise, a wide dynamic range, super spatial resolution, and non-necessity for prior knowledge of the source number or SNR. It is feasible to apply it for aeroacoustic imaging with the 2D non-uniform microphone array in wind tunnel tests, especially for near-field monopole and extended source imaging.
International audienceAcoustic imaging is a standard technique for mapping acoustic source powers and positions from limited observations on microphone sensors, which often causes an ill-conditioned inverse problem. In this article, we firstly improve the forward model of acoustic power propagation by considering background noises at the sensor array, and the propagation uncertainty caused by wind tunnel effects. We then propose a robust super-resolution approach via sparsity constraint for acoustic imaging in strong background noises. The sparsity parameter is adaptively derived from the sparse distribution of source powers. The proposed approach can jointly reconstruct source powers and positions, as well as the background noise power. Our approach is compared with the conventional beamforming, deconvolution and sparse regularization methods by simulated, wind tunnel data and hybrid data respectively. It is feasible to apply the proposed approach for effectively mapping monopole sources in wind tunnel tests
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.