Natural steroidal and synthetic non-steroidal estrogens such as 17β-estradiol (E2) and diethylstilbestrol (DES) have been found in natural water, which can potentially endanger public health and aquatic ecosystems. The removal and biodegradation of E2 and DES by Raphidocelis subcapitata were studied in bacteria-free cultures exposed to single and mixture treatments at different concentrations for 96 h. The results showed that R. subcapitata exhibited a rapid and strong ability to remove E2 and DES in both single and mixture treatments by biodegradation. At the end of 96 h, the removal percentage of single E2 and DES achieved 82.0%, 80.4%, 74.6% and 89.9%, 73.4%, 54.1% in 0.1, 0.5, and 1.5 mg·L−1, respectively. With the exception of the 0.1 mg·L−1 treatment at 96 h, the removal capacity of E2 was more efficient than that of DES by R. subcapitata. Furthermore, the removal percentage of mixture E2 and DES achieved 88.5%, 82.9%, 84.3% and 87.2%, 71.8%, 51.1% in 0.1, 0.5, and 1.5 mg·L−1, respectively. The removal percentage of mixed E2 was significantly higher than that of the single E2. The presence of DES could accelerate the removal of E2 from the mixture treatments in equal concentrations. In addition, the removal was mainly attributed to the biodegradation or biotransformation process by the microalgae cells rather than simple sorption and accumulation in the cells. The microalgae R. subcapitata demonstrated a high capability for the removal of the E2 and DES indicating future prospects for its application.
Microalgae are the most abundant microorganisms in aquatic environments, and many possess the ability to remove organic contaminants. The presence of endocrine disruption compounds (EDCs) in many coastal marine systems and their associated risks have elicited great concern, especially in the case of nonylphenol (NP), which is classified as a priority contaminate by the U.S. EPA. In this context, batch experiments were conducted to investigate the intracellular absorption, extracellular adsorption and biodegradation of NP by four species of marine microalgae: Phaeocystis globosa , Nannochloropsis oculata , Dunaliella salina and Platymonas subcordiformis . The results showed a sharp reduction of NP in medium containing the four microalgal species during the first 24 h of incubation, and the four species exhibited the greatest capacity for NP adsorption and absorption within 24 h of culture. However, the amount of NP absorbed and adsorbed by all four microalgae decreased with increasing time in culture, and intracellular absorption was greater than extracellular adsorption. After 120 h of exposure to NP, the four species could biodegrade most of the NP in the medium, with efficiencies ranging from 43.43 to 90.94%. In sum, we found that the four microalgae have high biodegradation percentages and can thus improve the bioremediation of NP-contaminated water.
The removal and biodegradation of nonylphenol (NP) by four freshwater microalgae, including three green algae (Scendesmus quadriauda, Chlorella vulgaris, and Ankistrodesmus acicularis) and one cyanobacterium (Chroococcus minutus) were studied in bacteria-free cultures exposed to different concentrations of NP for 5 days. All four algal species showed a rapid and high ability to remove NP (including bioaccumulation and biodegradation). Among these species, A. acicularis (Ankistrodesmus acicularis) had the highest NP removal rate (83.77%) at 120 h when exposed to different NP treatments (0.5–2.5 mg·L−1), followed by C. vulgaris (Chlorella vulgaris) (80.80%), S. quadriauda (Scendesmus quadriauda) (70.96%) and C. minutus (Chroococcus minutus) (64.26%). C. vulgaris had the highest NP biodegradation percentage (68.80%) at 120 h, followed by A. acicularis (65.63%), S. quadriauda (63.10%); and C. minutus (34.91%). The extracellular NP contents were lower than the intracellular NP contents in all tested algae. The ratio of the extracellular NP content and the intracellular NP content ranged from 0.04 to 0.85. Therefore, the removal of NP from the medium was mainly due to the algal degradation. These results indicate that A. acicularis and C. vulgaris are more tolerant to NP and could be used for treatment of NP contaminated aqueous systems effectively by bioremoval and biodegradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.