With the continuous developments of information technology, advanced computer technology and information technology have been promoted and used in the field of music. As one of the products of the rapid development of information technology, Artificial Intelligence (AI) involves many interdisciplinary subjects, adding new elements to music education. By analyzing the advantages of AI in music education, this paper systematically summarizes the application of AI in music education and discusses the development prospects of AI in music education. With the aid of AI, the combination of intelligent technology and on-site teaching solves the lack of individuation in the traditional mode and enhances students’ interest in learning.
As a novel type of energy storage element, supercapacitors have been extensively used in power systems, transportation and industry due to their high power density, long cycle life and good low-temperature performance. The health status of supercapacitors is of vital importance to the safe operation of the entire energy storage system. In order to improve the prediction accuracy of the remaining useful life (RUL) of supercapacitors, this paper proposes a method based on the Harris hawks optimization (HHO) algorithm and long short-term memory (LSTM) recurrent neural networks (RNNs). The HHO algorithm has the advantages of a wide global search range and a high convergence speed. Therefore, the HHO algorithm is used to optimize the initial learning rate of LSTM RNNs and the number of hidden-layer units, so as to improve the stability and reliability of the system. The root mean square error (RMSE) between the predicted result and the observed result reduced to 0.0207, 0.026 and 0.0341. The prediction results show that the HHO-LSTM has higher accuracy and robustness than traditional LSTM and GRU (gate recurrent unit) models.
Electrochemical supercapacitors are a promising type of energy storage device with broad application prospects. Developing an accurate model to reflect their actual working characteristics is of great research significance for rational utilization, performance optimization, and system simulation of supercapacitors. This paper presents the fundamental working principle and applications of supercapacitors, analyzes their aging mechanism, summarizes existing supercapacitor models, and evaluates the characteristics and application scope of each model. By examining the current state and limitations of supercapacitor modeling research, this paper identifies future development trends and research focuses in this area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.