Fiber optic gyroscope (FOG) inertial measurement unit (IMU) containing a three-orthogonal gyroscope and three-orthogonal accelerometer has been widely utilized in positioning and navigation of military and aerospace fields, due to its simple structure, small size, and high accuracy. However, noise such as temperature drift will reduce the accuracy of FOG, which will affect the resolution accuracy of IMU. In order to reduce the FOG drift and improve the navigation accuracy, a long short-term memory recurrent neural network (LSTM-RNN) model is established, and a real-time acquisition method of the temperature change rate based on moving average is proposed. In addition, for comparative analysis, backpropagation (BP) neural network model, CART-Bagging, classification and regression tree (CART) model, and online support vector machine regression (Online-SVR) model are established to filter FOG outputs. Numerical simulation based on field test data in the range of -20°C to 50°C is employed to verify the effectiveness and superiority of the LSTM-RNN model. The results indicate that the LSTM-RNN model has better compensation accuracy and stability, which is suitable for online compensation. This proposed solution can be applied in military and aerospace fields.
In order to solve the problem of task offloading with dependent subtasks in mobile edge computing (MEC), we propose a graph mapping offloading model based on deep reinforcement learning (DRL). We model the user's computing task as directed acyclic graph (DAG), called DAG task. Then the DAG task is converted into a topological sequence composed of task vectors according to the custom priority. And the model we proposed can map the topological sequence to offloading decisions. The offloading problem is formulated as a Markov decision process (MDP) to minimize the tradeoff between latency and energy consumption. The evaluation results demonstrate that our DRL-based graph mapping offloading model has better decision-making ability, which proves the availability and effectiveness of the model.Index Terms-mobile edge computing (MEC), task offloading, directed acyclic graph (DAG), Markov decision process (MDP), deep reinforcement learning (DRL)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.