We consider inference for a collection of partially observed, stochastic, interacting, nonlinear dynamic processes. Each process is identified with a label called its unit, and our primary motivation arises in biological metapopulation systems where a unit corresponds to a spatially distinct sub-population.Metapopulation systems are characterized by strong dependence through time within a single unit and relatively weak interactions between units, and these properties make block particle filters an effective tool for simulation-based likelihood evaluation. Iterated filtering algorithms can facilitate likelihood maximization for simulation-based filters. We introduce an iterated block particle filter applicable when parameters are unit-specific or shared between units. We demonstrate this algorithm by performing inference on a coupled epidemiological model describing spatiotemporal measles case report data for twenty towns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.