Network reconfiguration is an effective way to avoid severe, large-scale power outages and to improve the resilience of active distribution networks (ADNs). Furthermore, the rapid development of distributed energy resources (DERs) provides new perspectives for network reconfiguration. In this paper, the effect of network reconfiguration and DER collaboration on ADN’s resilient restoration are studied. The applications of DERs are fully explored. In order to achieve a better resilient performance, a detailed multiperiod model considering both reconfiguration and multiple DERs is established. Some linearization techniques are used to simplify the proposed model. Then, we build a rolling horizon optimization framework to solve the model. The framework eliminates the adverse effect of prediction errors and speeds up the calculation. By introducing predictions into strategy determination, the framework achieves a better restoration effect than the traditional greedy method. The proposed framework is tested on a 33-bus system. The simulations verify the efficiency of our work.
Magnetorheological elastomers (MREs) are a new type of intelligent magnetically controlled material consisting of a polymer matrix and magnetic particles. The modulus of elasticity of MREs varies with the external magnetic field strength due to the electromagnetic stress between the internal magnetic particle. However, the weak magnetoenological effect of MREs limits their development. In order to improve the performance of the MREs, a two-dimensional model of MREs is developed based on the equivalent volume cell method, and the force-magnetic coupling analysis is carried out with COMSOL. In this paper, the effects of volume fraction, particle distribution, and magnetic field strength on the magnetostatic shear mechanical properties of MREs were investigated. The results show that: the stress distribution inside of MREs is mainly concentrated on the particles and the contact position between the particles and air. Increasing the magnetic field and the magnetic particle content can effectively improve the magneto-mechanical properties of MREs. Increasing the magnetic field from 0.5T to 1.7T, the magnetic shear modulus was increased by 8.81%. Increasing the particle volume fraction from 15% to 60%, the magnetic shear modulus was increased by 313.64%. Decreasing the particle distance in the chain contribute to the magneto-mechanical properties enhancement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.