SUMMARY The guanine nucleotide exchange factor (GEF) Epithelial Cell Transforming sequence 2 (Ect2) has been implicated in cancer. However, it is not clear how Ect2 causes transformation, and whether Ect2 is necessary for tumorigenesis in vivo. Here, we demonstrate that nuclear Ect2 GEF activity is required for Kras-Trp53 lung tumorigenesis in vivo, and that Ect2-mediated transformation requires Ect2-dependent ribosomal DNA (rDNA) transcription. Ect2 activates rRNA synthesis by binding the nucleolar transcription factor Upstream Binding Factor 1 (UBF1) on rDNA promoters, and recruiting Rac1 and its downstream effector nucleophosmin (NPM) to rDNA. Protein kinase Cι (PKCι)-mediated Ect2 phosphorylation stimulates Ect2-dependent rDNA transcription. Thus, Ect2 regulates rRNA synthesis through a PKCι-Ect2-Rac1-NPM signaling axis that is required for lung tumorigenesis.
Background: Diabetic retinopathy, a vascular complication of diabetes mellitus, is the leading cause of visual impairment and blindness. circRNAs act as competing endogenous RNA, sponging target miRNA and thus influencing mRNA expression in vascular diseases. We investigated whether and how circDNMT3B is involved in retinal vascular dysfunction under diabetic conditions. Methods: qRT-PCR was performed to detect expression of circDNMT3B, miR-20b-5p, and BAMBI in retinal microvascular endothelial cells under diabetic conditions. Western blot, Cell Counting Kit-8, Transwell, Matrigel tube formation, and retinal trypsin digestion assays were conducted to explore the roles of circDNMT3B/miR-20b-5p/BAMBI in retinal vascular dysfunction. Bioinformatics analysis and luciferase reporter, siRNA, and overexpression assays were used to reveal the mechanisms of the circDNMT3B/miR-20b-5p/BAMBI interaction. Electroretinograms were used to evaluate visual function. Findings: Upregulation of miR-20b-5p under diabetic conditions promoted proliferation, migration, and tube formation of human retinal microvascular endothelial cells (HRMECs), which was mediated by downregulated BAMBI. Under diabetic conditions, circDNMT3B, which acts as a sponge of miR-20b-5p, is downregulated. circDNMT3B overexpression reduced retinal acellular capillary number and alleviated visual damage in diabetic rats. Changes in expression of circDNMT3B and miR-20b-5p were confirmed in the proliferative fibrovascular membranes of patients with diabetic retinopathy. Interpretation: Downregulation of circDNMT3B contributes to vascular dysfunction in diabetic retinas through regulating miR-20b-5p and BAMBI, providing a potential treatment strategy for diabetic retinopathy.
Chronic inflammation has long been considered to causatively link to colon cancer development. However, signal transduction pathways involved remain largely unidentified. Here, we report that p38γ mitogen-activated protein kinase mediates inflammatory signaling to promote colon tumorigenesis. Inflammation activates p38γ in mouse colon tissues and intestinal epithelial cell-specific p38γ knockout (KO) attenuates colitis and inhibits pro-inflammatory cytokine expression. Significantly, p38γ KO inhibits tumorigenesis in a colitis-associated mouse model. The specific p38γ pharmacological inhibitor pirfenidone also suppresses pro-inflammatory cytokine expression and colon tumorigenesis. The tumor-promoting activity of epithelial p38γ was further demonstrated by xenograft studies. In addition, p38γ is required for β-catenin/Wnt activities and p38γ stimulates Wnt transcription by phosphorylating β-catenin at Ser605. These results show that p38γ activation links inflammation and colon tumorigenesis. Targeting p38γ may be a novel strategy for colon cancer prevention and treatment.
Triple-negative breast cancer (TNBC) is highly progressive and lacks established therapeutic targets. p38γ mitogen-activated protein kinase (MAPK) (gene name: MAPK12) is overexpressed in TNBC but how overexpressed p38γ contributes to TNBC remains unknown. Here we show that p38γ activation promotes TNBC development and progression by stimulating cancer stem-like cell (CSC) expansion and may serve as a novel therapeutic target. p38γ silencing in TNBC cells reduces mammosphere formation and decreases expression levels of CSC drivers including Nanog, Oct3/4, and Sox2. Moreover, p38γ MAPK-forced expression alone is sufficient to stimulate CSC expansion and to induce epithelial cell transformation in vitro and in vivo. Furthermore, p38γ depends on its activity to stimulate CSC expansion and breast cancer progression, indicating a therapeutic opportunity by application of its pharmacological inhibitor. Indeed, the non-toxic p38γ specific pharmacological inhibitor pirfenidone selectively inhibits TNBC growth in vitro and/or in vivo and significantly decreases the CSC population. Mechanistically, p38γ stimulates Nanog transcription through c-Jun/AP-1 via a multi-protein complex formation. These results together demonstrate that p38γ can drive TNBC development and progression and may be a novel therapeutic target for TNBC by stimulating CSC expansion. Inhibiting p38γ activity with pirfenidone may be a novel strategy for the treatment of TNBC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.