Volatile organic compounds (VOCs) make up milk flavor and are essential attributes for consumers to evaluate milk quality. In order to investigate the influence of heat treatment on the VOCs of milk, electronic nose (E-nose), electronic tongue (E-tongue) and headspace solid-phase microextraction (HS-SPME)–gas chromatography–mass spectrometry (GC-MS) technology were used to evaluate the changes in VOCs in milk during 65 °C heat treatment and 135 °C heat treatment. The E-nose revealed differences in the overall flavor of milk, and the overall flavor performance of milk after heat treatment at 65 °C for 30 min is similar to that of raw milk, which can maximize the preservation of the original taste of milk. However, both were significantly different to the 135 °C-treated milk. The E-tongue results showed that the different processing techniques significantly affected taste presentation. In terms of taste performance, the sweetness of raw milk was more prominent, the saltiness of milk treated at 65 °C was more prominent, and the bitterness of milk treated at 135 °C was more prominent. The results of HS-SPME-GC-MS showed that a total of 43 VOCs were identified in the three types of milk—5 aldehydes, 8 alcohols, 4 ketones, 3 esters, 13 acids, 8 hydrocarbons, 1 nitrogenous compound, and 1 phenol. The amount of acid compounds was dramatically reduced as the heat treatment temperature rose, while ketones, esters, and hydrocarbons were encouraged to accumulate instead. Furfural, 2-heptanone, 2-undecanone, 2-furanmethanol, pentanoic acid ethyl ester, 5-octanolide, and 4,7-dimethyl-undecane can be used as the characteristic VOCs of milk treated at 135 °C. Our study provides new evidence for differences in VOCs produced during milk processing and insights into quality control during milk production.
Harvest time and storage time had significant effects on nutrient quality and Volatile Organic Compounds (VOCs) of alfalfa. The objective of this study was to use headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) to analyze alfalfa at different harvest periods (budding stage, early blooming, full blooming), and storage for 0 d, 90 d, 180 d, 270 d, and 360 d, the dynamic changes in VOCs and nutritional quality. Results indicated that ketones, aldehydes, alcohols and esters were the main volatile components of alfalfa VOCs, accounting for 87.41%, 88.57% and 90.85% of the total volatile components at budding stage, early blooming and full blooming, respectively. VOCs and nutrient quality of alfalfa varied significantly in different harvest periods; delayed harvesting significantly reduced alfalfa aldehydes, alcohols, crude protein (CP), and total digestible nutrients (TDN) and significantly increased ketone, dry matter (DM), acid detergent fiber (ADF) and neutral detergent fiber (NDF) contents (p < 0.05). After Comprehensive consideration ofthe yield, nutritional quality and VOCs of alfalfa, the best harvest time was determined to be the budding stage. The VOCs and nutrient quality of alfalfa were significantly different at different storage durations, and ketones, ADF and NDF were significantly increased and significantly reduced DM, CP and TDN (p < 0.05). Ketone content and neutral detergent fiber (NDF) content had a significant positive correlation, (NDF F = 5.5, p = 0.024). Storage 360 d 2-methylbutyraldehyde (musty), 1-octen-3-one (earthy musty odor) content increased. These may be the key compounds that causes the smell of fresh alfalfa to fade away and a musty smell to emerge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.