Highlights d We build the genomic and transcriptomic landscape of 133 cHCC-ICCs d Integrative genomic analysis reveals distinct cHCC-ICC subtypes d Both mono-and multiclonal origins of cHCC-ICC are identified d Nestin expression can serve as a biomarker for the diagnosis and prognosis of cHCC-ICC
We report on the findings of a blind challenge devoted to determining the frozencore, full configuration interaction (FCI) ground state energy of the benzene molecule in a standard correlation-consistent basis set of double-ζ quality. As a broad international endeavour, our suite of wave function-based correlation methods collectively represents a diverse view of the high-accuracy repertoire offered by modern electronic structure theory. In our assessment, the evaluated high-level methods are all found to qualitatively agree on a final correlation energy, with most methods yielding an estimate of the FCI value around −863 mE H. However, we find the root-mean-square deviation of the energies from the studied methods to be considerable (1.3 mE H), which in light of the acclaimed performance of each of the methods for smaller molecular systems clearly displays the challenges faced in extending reliable, near-exact correlation methods to larger systems. While the discrepancies exposed by our study thus emphasize the fact that the current state-of-the-art approaches leave room for improvement, we still expect the present assessment to provide a valuable community resource for benchmark and calibration purposes going forward.
The efficiency of the recently proposed iCIPT2 [iterative configuration interaction (iCI) with selection and second-order perturbation theory (PT2); J. Chem. Theory Comput. 2020Comput. , 16, 2296 for strongly correlated electrons is further enhanced (by up to 20×) by using ( 1) a new ranking criterion for configuration selection, (2) a new particle-hole algorithm for Hamiltonian construction over randomly selected configuration state functions (CSF), and (3) a new data structure for the quick sorting of the variational and first-order interaction spaces. Meanwhile, the memory requirement is also significantly reduced. As a result, this improved implementation of iCIPT2 can handle 1 order of magnitude more CSFs than the previous version, as revealed by taking the chromium dimer and an iron−sulfur cluster, [Fe 2 S 2 (SCH 3 )] 4 2− , as examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.