Background: Stuttering is characterized by dysfluency and difficulty in speech production. Previous research has found abnormalities in the neural function of various brain areas during speech production tasks. However, the cognitive neural mechanism of stuttering has still not been fully determined. Method: Activation likelihood estimation analysis was performed to provide neural imaging evidence on neural bases by reanalyzing published studies. Results: Our analysis revealed overactivation in the bilateral posterior superior temporal gyrus, inferior frontal gyrus, medial frontal gyrus, precentral gyrus, postcentral gyrus, basal ganglia, and cerebellum, and deactivation in the anterior superior temporal gyrus and middle temporal gyrus among the stutterers. The overactivated regions might indicate a greater demand in feedforward planning in speech production, while the deactivated regions might indicate dysfunction in the auditory feedback system among stutterers. Conclusions: Our findings provide updated and direct evidence on the multi-level impairment (feedforward and feedback systems) of stutterers during speech production and show that the corresponding neural bases were differentiated.
Music tension is a link between music structures and emotions. As music unfolds, developmental patterns induce various emotional experiences, but the relationship between developmental patterns and tension experience remains unclear. The present study compared two developmental patterns of two successive phrases (tonal shift and melodic shift) with repetition condition to investigate the relationship with tension experience. Professional musicians rated on-line felt tension and EEG responses were recorded while listening to music sequences. Behavioral results showed that tension ratings under tonal and melodic shift conditions were higher than those under repetition conditions. ERP results showed larger potentials at early P300 and late positive component (LPC) time windows under tonal shift condition, and early right anterior negativity (ERAN) and LPC under melodic shift condition. ERSP results showed early beta and late gamma power increased under tonal shift condition, theta power decreased and alpha power increased under melodic shift condition. Our findings suggest that developmental patterns play a vital role in tension experiences; tonal shift affects tension by tonal shift detection and integration, while melodic shift affects tension by attentional processing and working memory integration. From the perspective of Event Structure Processing Model, solid evidence was given to specify the time-span segmentation and reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.