The incorporation of Cognitive Radio (CR) and Energy Harvesting (EH) capabilities in wireless sensor networks enables spectrum and energy efficient heterogeneous cognitive radio sensor networks (HCRSNs). The new networking paradigm of HCRSNs consists of EH-enabled spectrum sensors and batterypowered data sensors. Spectrum sensors can cooperatively scan the licensed spectrum for available channels, while data sensors monitor an area of interest and transmit sensed data to the sink over those channels. In this work, we propose a resource allocation solution for the HCRSN to achieve the sustainability of spectrum sensors and conserve energy of data sensors. The proposed solution is achieved by two algorithms that operate in tandem, a spectrum sensor scheduling algorithm and a data sensor resource allocation algorithm. The spectrum sensor scheduling algorithm allocates channels to spectrum sensors such that the average detected available time for the channels is maximized, while the EH dynamics are considered and PU transmissions are protected. The data sensor resource allocation algorithm allocates the transmission time, power and channels such that the energy consumption of the data sensors is minimized. Extensive simulation results demonstrate that the energy consumption of the data sensors can be significantly reduced while maintaining the sustainability of the spectrum sensors.
Abstract:The Portulaca oleracea L. (P. oleracea) has been used to treat bacillary dysentery for thousands of years in China. Pharmacology studies on P. oleracea have also showed its significant antibacterial effects on the enteropathogenic bacteria, which might reveal the treatment of P. oleracea in cases of bacillary dysentery to some extent. To date, however, the therapeutic basis of P. oleracea treating on bacillary dysentery remains unknown. We determined the antibacterial effective fraction of P. oleracea in a previous study. The current study, which is based on our previous study, was first designed to isolate, identify and screen antibacterial active constituents from P. oleracea. As a result, four new compounds (1-4), portulacerebroside B (1), portulacerebroside C (2), portulacerebroside D (3) and portulaceramide A (4) along with five known compounds (5-9) were isolated, and structures were established by their physico-chemical constants and spectroscopic analysis. The antibacterial activities against common enteropathogenic bacteria were evaluated for all compounds and the new compounds 1-4 showed significant antibacterial effect on enteropathogenic bacteria in vitro, which might contribute to revealing the treatment of P. oleracea in cases of bacillary dysentery.
His main research interests are Optimization Analysis Technology of Power Distribution Network, Network Control of Distributed Generation System, microgrids, and Energy Internet. He has authored and coauthored over 280 journal and conference papers, six monographs and co-invented 90 patents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.