Electrochemical CO 2 reduction is a promising way to mitigate CO 2 emissions and close the anthropogenic carbon cycle. Among products from CO 2 RR, multicarbon chemicals, such as ethylene and ethanol with high energy density, are more valuable. However, the selectivity and reaction rate of C 2 production are unsatisfactory due to the sluggish thermodynamics and kinetics of C−C coupling. The electric field and thermal field have been studied and utilized to promote catalytic reactions, as they can regulate the thermodynamic and kinetic barriers of reactions. Either raising the potential or heating the electrolyte can enhance C−C coupling, but these come at the cost of increasing side reactions, such as the hydrogen evolution reaction. Here, we present a generic strategy to enhance the local electric field and temperature simultaneously and dramatically improve the electric−thermal synergy desired in electrocatalysis. A conformal coating of ∼5 nm of polytetrafluoroethylene significantly improves the catalytic ability of copper nanoneedles (∼7-fold electric field and ∼40 K temperature enhancement at the tips compared with bare copper nanoneedles experimentally), resulting in an improved C 2 Faradaic efficiency of over 86% at a partial current density of more than 250 mA cm −2 and a record-high C 2 turnover frequency of 11.5 ± 0.3 s −1 Cu site −1 . Combined with its low cost and scalability, the electric−thermal strategy for a state-of-the-art catalyst not only offers new insight into improving activity and selectivity of value-added C 2 products as we demonstrated but also inspires advances in efficiency and/or selectivity of other valuable electro-/photocatalysis such as hydrogen evolution, nitrogen reduction, and hydrogen peroxide electrosynthesis.
The dependence of differential capacity versus voltage (dQ/dV) of Li/NCA half cells on temperature and testing current (C-rate) was studied. Kinetic hindrance of lithium diffusion at both low (∼3.5 V vs Li/Li + ) and high states of charge (∼4.17 V) was observed. In-situ X-ray diffraction measured the volume changes of the NCA lattice versus state of charge. NCA/graphite pouch cells were cycled in various voltage ranges to explore the impacts of depth of discharge (DOD) ranges and the kinetic hindrance regions in NCA on cell failure. dV/dQ analysis, full cell impedance and symmetric cell impedance analysis as well as half-cell studies of recovered electrodes were performed after 0, ∼400 and 800 charge-discharge cycles. The contributions of active mass loss and shift loss (from loss of Li inventory) to the capacity fade of NCA/graphite cells under various testing conditions were determined. The increase in positive electrode charge transfer impedance with cycle number was proportional to the increase of positive electrode active mass loss. There was no strong correlation between positive electrode active mass loss and lattice volume change. NCA active mass loss during cycling can be minimized when the dQ/dV peaks at ∼3.5 and 4.17 V (vs. Li/Li + ), that show kinetic hindrance, are partially or completely avoided.
Rational design and bottom-up synthesis based on the structural topology is a promising way to obtain two-dimensional metal–organic frameworks (2D MOFs) in well-defined geometric morphology. Herein, a topology-guided bottom-up synthesis of a novel hexagonal 2D MOF nanoplate is realized. The hexagonal channels constructed via the distorted (3,4)-connected Ni2(BDC)2(DABCO) (BDC = 1,4-benzenedicarboxylic acid, DABCO = 1,4-diazabicyclo[2.2.2]octane) framework serve as the template for the specifically designed morphology. Under the inhibition and modulation of pyridine through a substitution–suppression process, the morphology can be modified from hexagonal nanorods to nanodisks and to nanoplates with controllable thickness tuned by the dosage of pyridine. Subsequent pyrolysis treatment converts the nanoplates into a N-doped Ni@carbon electrocatalyst, which exhibits a small overpotential as low as 307 mV at a current density of 10 mA cm–2 in the oxygen evolution reaction.
Silicon (Si) has been attracting extensive attention for rechargeable lithium (Li)‐ion batteries due to its high theoretical capacity and low potential vs Li/Li+. However, it remains challenging and problematic to stabilize the Si materials during electrochemical cycling because of the huge volume expansion, which results in losing electric contact and pulverization of Si particles. Consequently, the Si anode materials generally suffer from poor cycling, poor rate performance, and low coulomb efficiency, preventing them from practical applications. Up‐to‐date, there are numerous reports on the engineering of Si anode materials at microscale and nanoscale with significantly improved electrochemical performances. In this review, we will concentrate on various precisely designed protective layers for silicon‐based materials, including carbon layers, inorganic layers, and conductive polymer protective layer. First, we briefly introduced the alloying and failure mechanism of Si as anode materials upon electrochemical reactions. Following that, representative cases have been introduced and summarized to illustrate the purpose and advancement of protective coating layers, for instance, to alleviate pulverization and improve conductivity caused by volume expansion of Si particles during charge/discharge process, and maintain the surface stability of Si particles to form a stable solid‐electrolyte interphase layer. At last, possible strategies on the protective coating layer for stabilizing silicon anode materials that can be applied in the future have been indicated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.