Colorectal cancer is a common type of cancer with high incidence and poor prognosis. Increased expression of myosin light chain 9 (MYL9) has been reported in early-stage and recurrent colorectal cancer tissues. This study aimed to investigate the precise role of MYL9 on the progression of colorectal cancer. MYL9 expression in several colorectal cancer cell lines was detected by Western blotting and RT-qPCR. Following MYL9 overexpression or knockdown, MYL9 expression was determined via RT-qPCR. Cell proliferation was detected with Cell Counting Kit-8 assay. Cell invasion, migration and angiogenesis were, respectively, examined with transwell, wound healing and tube formation assays. The binding between MYL9 and Yes-associated protein 1 (YAP1) was verified by a co-immunoprecipitation assay. The expression of YAP1, connective tissue growth factor and cysteine-rich angiogenic inducer 61 was examined by Western blotting. Subsequently, YAP1 silencing or Hippo antagonist was performed to clarify the regulatory mechanisms of MYL9 in colorectal cancer progression. Experimental results showed that MYL9 expression was elevated in colorectal cancer cell lines. MYL9 overexpression promoted cell proliferation, invasion, migration and angiogenesis, while silencing of MYL9 exerted the opposite effects. Results of co-immunoprecipitation assay indicated that MYL9 could bind to YAP1. Further experiments revealed that MYL9 affected the expression of YAP1 and its downstream signaling proteins. Afterward, YAP1 knockdown or the addition of Hippo antagonist inhibited the proliferation, invasion, migration and angiogenesis of colorectal cancer cells. Overall, MYL9 promotes the proliferation, invasion, migration and angiogenesis of colorectal cancer cells by binding to YAP1 and thereby activating Hippo signaling.
Background Colorectal cancer (CRC) is one of the deadliest cancers in the world. Increasing evidence suggests that circular RNAs (circRNAs) are implicated in CRC pathogenesis. This study aimed to determine the role of circAPLP2 and explore a potential mechanism of circAPLP2 action in CRC. Methods The expression of circAPLP2, miR-335-5p and helicase lymphoid-specific (HELLS) mRNA in CRC tissues and cells was measured by quantitative real-time polymerase chain reaction (qPCR). The functional effects of circAPLP2 on cell cycle progression/cell apoptosis, colony formation, cell migration, invasion and glycolysis metabolism were investigated by flow cytometry assay, colony formation assay, wound healing assay, transwell assay and glycolysis stress test. Glycolysis metabolism was also assessed by the levels of glucose uptake and lactate production. The protein levels of HELLS and HK2 were detected by western blot. The interaction between circAPLP2 and miR-335-5p, or miR-335-5p and HELLS was verified by dual-luciferase reporter assay. The role of circAPLP2 on solid tumor growth in nude mice was investigated. Results circAPLP2 and HELLS were overexpressed, but miR-335-5p was downregulated in CRC tissues and cells. Functional analyses showed that circAPLP2 knockdown suppressed CRC cell cycle progression, colony formation, migration, invasion and glycolysis metabolism, induced cell apoptosis and blocked solid tumor growth in nude mice. Moreover, miR-335-5p was a target of circAPLP2, and miR-335-5p could also bind to HELLS. Rescue experiments presented that miR-335-5p inhibition reversed the effects of circAPLP2 knockdown, and HELLS overexpression abolished the role of miR-335-5p restoration. Importantly, circAPLP2 could positively regulate HELLS expression by mediating miR-335-5p. Conclusion circAPLP2 triggered CRC malignant development by increasing HELLS expression via targeting miR-335-5p, which might be a novel strategy to understand and treat CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.