Ce2[Zr1−x(Mg1/3Sb2/3)x]3(MoO4)9 (0.02 ⩽ x ⩽ 0.10) ceramics were prepared by the traditional solid-state method. A single phase, belonging to the space group of $$R⩈erline 3 c$$
R
3
¯
c
, was detected by using X-ray diffraction at the sintering temperatures ranging from 700 to 850 °C. The microstructures of samples were examined by applying scanning electron microscopy (SEM). The crystal structure refinement of these samples was investigated in detail by performing the Rietveld refinement method. The intrinsic properties were calculated and explored via far-infrared reflectivity spectroscopy. The correlations between the chemical bond parameters and microwave dielectric properties were calculated and analyzed by Phillips-van Vechten-Levine (P-V-L) theory. Ce2[Zr0.94(Mg1/3Sb2/3)0.06]3(MoO4)9 ceramics with excellent dielectric properties were sintered at 725 °C for 6 h (εr = 10.37, Q×f = 71,748 GHz, and τf = −13.6 ppm/°C, εr is the dielectric constant, Q×f is the quality factor, and τf is the temperature coefficient of resonant frequency).
Ce 2 [Zr 1-x (Mg 1/3 Sb 2/3 ) x ] 3 (MoO 4 ) 9 (0.02≤x≤0.10) ceramics were prepared well through the traditional solid-state method. A single phase, belonging to the space group of R-3c, was detected by using X-ray diffraction at sintering temperatures ranging from 700 to 850 °C. The crystallization micro-structural of specimens was examined by applying Scanning electron microscopy. The structural refinement of these samples was investigated in detail by performing the Rietveld refinement method. The intrinsic properties were calculated and explored via far-infrared reflectivity spectroscopy. The correlations between the chemical bonds parameters and microwave dielectric properties were calculated and analyzed by P-V-L theory. Ce 2 [Zr 0.94 (Mg 1/3 Sb 2/3 ) 0.06 ] 3 (MoO 4 ) 9 ceramics with excellent dielectric properties: ε r = 10.37, Q×f = 71748 GHz and τ f = −13.6 ppm/°C sintered at 725 °C for 6 hours.
Ce2[Zr1-x(Mg1/3Sb2/3)x]3(MoO4)9 (0.02≤x≤0.10) ceramics were prepared well through the traditional solid-state method. A single phase, belonging to the space group of R-3c, was detected by using X-ray diffraction at sintering temperatures ranging from 700 to 850 °C. The crystallization micro-structural of specimens was examined by applying Scanning electron microscopy. The structural refinement of these samples was investigated in detail by performing the Rietveld refinement method. The intrinsic properties were calculated and explored via far-infrared reflectivity spectroscopy. The correlations between the chemical bonds parameters and microwave dielectric properties were calculated and analyzed by P-V-L theory. Ce2[Zr0.94(Mg1/3Sb2/3)0.06]3(MoO4)9 ceramics with excellent dielectric properties: εr = 10.37, Q×f = 71748 GHz and τf = −13.6 ppm/°C sintered at 725 °C for 6 hours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.