A series of copper–Al2O3 composite materials (CACMs) with 0, 2, 4, and 6 wt.% of Al2O3 (average size about 80 nm) was fabricated by powder metallurgy method. The tribological behavior of CACMs was investigated by a ring-on-block sliding friction test. The results show that the hardness and the wear resistance of CACMs are improved by the addition of Al2O3. The CACMs with 0% Al2O3 (pure copper) shows the mechanism of adhesive wear and have very poor wear resistance. By comparing with the pure copper, the wear resistance of the CACMs with 2% and 6% Al2O3 is improved. When the proportion of Al2O3 is 4%, slightly abrasive wear occurs at the interface between two sliding surfaces, and the CACMs achieve higher wear resistance in comparison to that with 2% and 6% Al2O3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.