Precipitation is the main factor that triggers landslides. Rainfall-induced landslide susceptibility mapping (LSM) is crucial for disaster prevention and disaster losses mitigation, though most studies are temporally ambiguous and on a regional scale. To better reveal landslide mechanisms and provide more accurate landslide susceptibility maps for landslide risk assessment and hazard prediction, developing a global dynamic LSM model is essential. In this study, we used Google Earth Engine (GEE) as the main data platform and applied three tree-based ensemble machine learning algorithms to construct global, dynamic rainfall-induced LSM models based on dynamic and static landslide influencing factors. The dynamic perspective is used in LSM: dynamic changes in landslide susceptibility can be identified on a daily scale. We note that Random Forest algorithm offers robust performance for accurate LSM (AUC = 0.975) and although the classification accuracy of LightGBM is the highest (AUC = 0.977), the results do not meet the sufficient conditions of a landslide susceptibility map. Combined with quantitative precipitation products, the proposed model can be used for the release of historical and predictive global dynamic landslide susceptibility information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.