The coordination between cellular differentiation and the mesenchymal/stem transition is essential for both embryo development and neoplasia, suggesting a mechanistic link between these two major processes. In this work we show that miR-127, an embryo-expressing lung miRNA, was prominently induced in lung adenocarcinoma and correlated with poor prognosis. Elevated miR-127 level drove a pronounced shift from the epithelial to the mesenchymal phenotype in cancer cells, and this shift was associated with their acquisition of stem-like traits, increased resistance to the epidermal growth factor receptor inhibitor and tumor-propagating potential. In contrast, antagonizing miR-127 markedly reversed this malignant transition, compromised the stem-like properties and the in vivo tumorigenic capability of cancer cells. Importantly, a regulatory loop involving the inflammatory signals NF-κB, miR-127 and tumor necrosis factor alpha-induced protein 3 was uncovered as a self-reinforcing circuitry that ensured an aggressive transition in lung cancer. Thus, this work identifies a novel molecular mechanism linking stemness, malignancy and inflammation, opening a new avenue for cancer treatment.
Hepatitis B virus (HBV) infection causes hepatocyte death and liver damage, which may eventually lead to cirrhosis and liver cancer. Hepatitis B virus X protein (HBx) is a key antigen that is critically involved in HBV-associated liver diseases. However, the molecular basis for its pathogenesis, particularly in liver damage, has not been well defined. Herein, we report that HBx was able to enhance the susceptibility of hepatocytes to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Increased sensitivity to TRAIL was associated with HBx-induced upregulation of miR-125a, which, in turn, suppressed the expression of its putative target gene, A20 E3 ligase. Importantly, we demonstrate that the defective expression of A20 impaired the K63-linked polyubiquitination of caspase-8, which reciprocally enhanced the activation of caspase-8, the recruitment of Fas-associated death domain (FADD), and the formation of death-inducing signaling complex (DISC), thereby promoting HBx-mediated apoptotic signaling. Accordingly, antagonizing miR-125a or ectopically expressing A20 in hepatocytes abolished the pro-apoptotic effect of HBx. Conversely, the overexpression of miR-125a or knockdown of A20 mimicked HBx to enhance TRAIL susceptibility in hepatocytes. Thus, we establish, for the first time, a miR-125a/A20-initiated and caspase-8-targeted mechanism by which HBx modulates apoptotic signaling and increases hepatic susceptibility to the damaging agent, which might provide novel insight into HBV-related liver pathology.
The coordination of restraining and priming of antiviral signaling constitute a fundamental aspect of immunological functions. However, we currently know little about the molecular events that can translate the pathogenic cues into the appropriate code for antiviral defense. Our present study reports a specific role of B cell lymphoma (Bcl)6 as a checkpoint in the initiation of the host response to cytosolic RNA viruses. Remarkably, Bcl6 specifically binds to the interferon-regulatory factor (IRF)7 loci and restrains its transcription, thereby functioning as a negative regulator for interferon (IFN)-β production and antiviral responses. The signal-controlled turnover of the Bcl6, most likely mediated by microRNA-127, coordinates the antiviral response and inflammatory sequelae. Accordingly, de-repression of Bcl6 resulted in a phenotypic conversion of macrophages into highly potent IFN-producing cells and rendered mice more resistant to pathogenic RNA virus infection. The failure to remove the Bcl6 regulator, however, impedes the antiviral signaling and exaggerates viral pneumonia in mice. We thus reveal a novel key molecular checkpoint to orchestrate antiviral innate immunity.
Comprehensive immune responses are essential for eliminating pathogens but must be tightly controlled to avoid sustained immune activation and potential tissue damage. The engagement of TLR4, a canonical pattern recognition receptor, has been proposed to trigger inflammatory responses with different magnitudes and durations depending on TLR4 cellular compartmentalization. In the present study, we identify an unexpected role of Lamtor5, a newly identified component of the amino acid-sensing machinery, in modulating TLR4 signaling and controlling inflammation. Specifically, Lamtor5 associated with TLR4 via their LZ/TIR domains and facilitated their colocalization at autolysosomes, preventing lysosomal tethering and the activation of mTORC1 upon LPS stimulation and thereby derepressing TFEB to promote autophagic degradation of TLR4. The loss of Lamtor5 was unable to trigger the TFEB-driven autolysosomal pathway and delay degradation of TLR4, leading to sustained inflammation and hence increased mortality among Lamtor5 haploinsufficient mice during endotoxic shock. Intriguingly, nutrient deprivation, particularly leucine deprivation, blunted inflammatory signaling and conferred protection to endotoxic mice. This effect, however, was largely abrogated upon Lamtor5 deletion. We thus propose a homeostatic function of Lamtor5 that couples pathogenic insults and nutrient availability to optimize the inflammatory response; this function may have implications for TLR4-associated inflammatory and metabolic disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.