Ginsenoside Rg1 (Rg1) is one of the major bioactive ingredients in Panax ginseng, and it attenuates inflammation and apoptosis. The aims of our study were to explore the potential of Rg1 for the treatment of intestinal I/R injury and to determine whether the protective effects of Rg1 were exerted through the Wnt/β-catenin signaling pathway. In this study, Rg1 treatment ameliorated inflammatory factors, ROS and apoptosis that were induced by intestinal I/R injury. Cell viability was increased and cell apoptosis was decreased with Rg1 pretreatment following hypoxia/reoxygenation (H/R) in the in vitro study. Rg1 activated the Wnt/β-catenin signaling pathway in both the in vivo and in vitro models, and in the in vitro study, the activation was blocked by DKK1. Our study provides evidence that pretreatment with Rg1 significantly reduces ROS and apoptosis induced by intestinal I/R injury via activation of the Wnt/β-catenin pathway. Taken together, our results suggest that Rg1 could exert its therapeutic effects on intestinal I/R injury through the Wnt/β-catenin signaling pathway and provide a novel treatment modality for intestinal I/R injury.
SUMMARYObjective: MicroRNAs (miRNAs) are noncoding small RNAs that control gene expression at the posttranscriptional level. Some dysregulated miRNAs have been shown to play important roles in epileptogenesis. The aim of this study was to determine if miR199a-5p regulates seizures and seizure damage by targeting the antiapoptotic protein silent information regulator 1 (SIRT1). Methods: Hippocampal expression levels of miR-199a-5p, SIRT1, and acetylated p53 were quantified by quantitative real-time polymerase chain reaction (RT-PCR) and Western blotting in the acute, latent, and chronic stages of epilepsy in a rat lithiumpilocarpine epilepsy model. Silencing of miR-199a-5p expression in vivo was achieved by intracerebroventricular injection of antagomirs. The effects of targeting miR-199a-5p and SIRT1 protein on seizure and epileptic damage post-status epilepticus were assessed by electroencephalography (EEG) and immunohistochemistry, respectively. Results: miR-199a-5p expression was up-regulated, SIRT1 levels were decreased, and neuron loss and apoptosis were induced in epilepsy model rats compared with normal controls, as determined by up-regulation of acetylated p53 and cleaved caspase-3 expression. In vivo knockdown of miR-199a-5p by an antagomir alleviated the seizurelike EEG findings and protected against neuron damage, in accordance with up-regulation of SIRT1 and subsequent deacetylation of p53. Furthermore, the seizure-suppressing effect of the antagomir was partly SIRT1 dependent. Significance: The results of this study suggest that silencing of miR-199a-5p exerts a seizure-suppressing effect in rats, and that SIRT1 is a direct target of miR-199a-5p in the hippocampus. The effect of miR-199a-5p on seizures and seizure damage is mediated via down-regulation of SIRT1. The miR-199a-5p/SIRT1 pathway may thus represent a potential target for the prevention and treatment of epilepsy and epileptic damage.
Early biomarker-based diagnosis of focal cortical dysplasia (FCD) represents a major clinical challenge. The aim of this study was to identify novel brain microRNAs (miRNAs) in patients with refractory epilepsy and FCD as potential biomarkers. We evaluated serum hsa-miR-4521 as a promising novel biomarker in patients with FCD. Tissue for microarray was obtained from nine patients with temporal lobe refractory epilepsy who underwent surgery to remove epileptic foci identified by cortical video electroencephalogram monitoring. Control tissue was collected from eight patients with hypertension who required emergency surgery to remove an intracranial hematoma. The Affymetrix® GeneChip® Command Console® Software (Affymetrix miRNA 4.0) was used to compare miRNA expression in the cerebral cortex of experimental and control patients. Temporal cortex tissue and serum samples were taken from the same patients for verification of hsa-miR-4521 expression by real-time quantitative polymerase chain reaction (RT-qPCR). The experimental and control patients did not differ significantly in terms of age and gender. 19.4 % (148/764) of the total miRNAs were differentially expressed in experimental and control tissue, which is in agreement with the existing literature. We selected miRNA-4521 for further analysis; the fold-change in expression was 14.4707 and the q value was almost 0, which confirmed up-regulation. Significant up-regulation of hsa-miR-4521 was further validated by RT-qPCR. miRNA microarrays can efficiently and conveniently identify differentially expressed miRNAs in epilepsy brain tissue. This is the first study to identify differential expression of hsa-miR-4521 in brain tissue and serum of refractory epilepsy patients and suggests that serum hsa-miR-4521 may represent a potential diagnostic biomarker for FCD with refractory epilepsy.
Background/Aims: Ischemia-reperfusion (I/R) adversely affects the intestinal mucosa. The major mechanisms of I/R are the generation of reactive oxygen species (ROS) and apoptosis. Salvianolic acid A (SalA) is suggested to be an effective antioxidative and antiapoptotic agent in numerous pathological injuries. The present study investigated the protective role of SalA in I/R of the intestine. Methods: Adult male Sprague-Dawley rats were subjected to intestinal I/R injury in vivo. In vitro experiments were performed in IEC-6 cells subjected to hypoxia/ reoxygenation (H/R) stimulation to simulate intestinal I/R. TNF-α, IL-1β, and IL-6 levels were measured using enzyme-linked immunosorbent assay. Malondialdehyde and myeloperoxidase and glutathione peroxidase levels were measured using biochemical analysis. Apoptosis was measured by terminal deoxynucleotidyl transferase mediated dUTP nick-end labeling staining or flow cytometry in vivo and in vitro. The level of reactive oxygen species (ROS) was measured by dichlorodihydrofluorescin diacetate (DCFH-DA) staining. Western blotting was performed to determine the expression of heme oxygenase-1 (HO-1), Nrf2 and proteins associated with apoptosis. The mRNA expressions of Nrf2 and HO-1 were detected by quantitative real-time polymerase chain reaction in vivo and in vitro. Results: Malondialdehyde level and myeloperoxidase and glutathione peroxidase, TNF-α, IL-1β, and IL-6 levels group in intestinal tissue decreased significantly in the SalA pretreatment groups compared to the I/R group. SalA markedly abolished intestinal injury compared to the I/R group. SalA significantly attenuated apoptosis and increased Nrf2/HO-1 expression in vivo and in vitro. However, Nrf2 siRNA treatment partially abrogated the above mentioned effects of SalA in H/R-induced ROS and apoptosis in IEC-6 cells. Conclusion: The present study demonstrated that SalA ameliorated oxidation, inhibited the release of pro-inflammatory cytokines and alleviated apoptosis in I/R-induced injury and that these protective effects may partially occur via regulation of the Nrf2/ HO-1 pathways.
The overall data of the present meta-analysis showed that SIRT1 expression was not correlated with clinicopathological features except for depth of invasion, lymph node metastasis and TNM stage. Simultaneously, SIRT1 overexpression predicted a poor OS in CRC patients, and SIRT1 is a candidate negative prognostic biomarker for CRC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.