The ALS (agglutinin-like sequence) gene family encodes proteins that play a role in adherence of the yeast Candida albicans to endothelial and epithelial cells. The proteins are proposed as virulence factors for this important fungal pathogen of humans. We analyzed 66 C. albicans strains, representing a worldwide collection of 266 infection-causing isolates, and discovered 60 alleles of the ALS7 open reading frame (ORF). Differences between alleles were largely caused by rearrangements of repeat elements in the so-called tandem repeat domain (21 different types occurred) and the VASES region (19 different types). C. albicans is diploid, and combinations of ALS7 alleles generated 49 different genotypes. ALS7 expression was detected in samples isolated directly from five oral candidosis patients. ORFs in the opposite direction contained within the ALS7 ORF were also transcribed in all strains tested. Isolates representing a more pathogenic general-purpose genotype (GPG) cluster of strains tended to have more tandem repeats than other strains. Two types of VASES regions were largely exclusive to GPG strains; the remaining types were largely exclusive to noncluster strains. Our results provide evidence that ALS7 is a hypermutable contingency locus and important for the success of C. albicans as an opportunistic pathogen of humans.
Increased resilience of pasture grasses mediated by fungal Epichloë endophytes is crucial to pastoral industries. The underlying mechanisms are only partially understood and likely involve very different activities of the endophyte in different plant tissues and responses of the plant to these. We analyzed the transcriptomes of Epichloë festucae and its host, Lolium perenne, in host tissues of different function and developmental stages. The endophyte contributed approximately 10× more to the transcriptomes than to the biomass of infected tissues. Proliferating mycelium in growing host tissues highly expressed genes involved in hyphal growth. Nonproliferating mycelium in mature plant tissues, transcriptionally equally active, highly expressed genes involved in synthesizing antiherbivore compounds. Transcripts from the latter accounted for 4% of fungal transcripts. Endophyte infection systemically but moderately increased transcription of L. perenne genes with roles in hormone biosynthesis and perception as well as stress and pathogen resistance while reducing expression of genes involved in photosynthesis. There was a good correlation between transcriptome-based observations and physiological observations. Our data indicate that the fitness-enhancing effects of the endophyte are based both on its biosynthetic activities, predominantly in mature host tissues, and also on systemic alteration of the host's hormonal responses and induction of stress response genes. [Formula: see text] Copyright © 2017 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
The yeast Candida albicans can mate. However, in the natural environment mating may generate progeny (fusants) fitter than clonal lineages too rarely to render mating biologically significant: C. albicans has never been observed to mate in its natural environment, the human host, and the population structure of the species is largely clonal. It seems incapable of meiosis, and most isolates are diploid and carry both mating-type-like (MTL) locus alleles, preventing mating. Only chromosome loss or localized loss of heterozygosity can generate mating-competent cells, and recombination of parental alleles is limited. To determine if mating is a biologically significant process, we investigated if mating is under selection. The ratio of nonsynonymous to synonymous mutations in mating genes and the frequency of mutations abolishing mating indicated that mating is under selection. The MTL locus is located on chromosome 5, and when we induced chromosome 5 loss in 10 clinical isolates, most of the resulting MTL-homozygotes could mate with each other, producing fusants. In laboratory culture, a novel environment favoring novel genotypes, some fusants grew faster than their parents, in which loss of heterozygosity had reduced growth rates, and also faster than their MTL-heterozygous ancestors-albeit often only after serial propagation. In a small number of experiments in which co-inoculation of an oral colonization model with MTL-homozygotes yielded small numbers of fusants, their numbers declined over time relative to those of the parents. Overall, our results indicate that mating generates genotypes superior to existing MTL-heterozygotes often enough to be under selection.KEYWORDS Candida albicans; mating; parasexual cycle; cryptic sexual cycle S EX is costly and disrupts well-adapted allele combinations. It can also be advantageous by speeding up adaptation or by purging deleterious mutations. It has been difficult to establish how, precisely, these and other benefits outweigh the cost of sex. Indeed, abandoning sex in favor of clonal reproduction can be advantageousasexual species arise frequently. Their life spans are short, however, indicating that sex may be essential for the long-term survival of species (Otto and Lenormand 2002;Rice 2002).Sexual cycles have not been observed for 20% of fungal species (Carlile et al. 2001). Whether these species are truly asexual or merely restrict the frequency of sex-a strategy believed to maximize its benefits (Heitman 2006)-is difficult to determine. Genetic marker distributions in such species often suggest limited recombination (Carlile et al. 2001). However, clonal reproduction will initially copy the genetic marker distributions that were generated by sex, and new mutations and genetic drift will only slowly erase evidence of past recombination (Schmid et al. 2004;Cox et al. 2013). With rare exceptions, fungi without observable sexual cycles are derived from recent sexual ancestors (Carlile et al. 2001;Schmid et al. 2004;Butler 2007). Thus genetic marker distributi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.