BackgroundPressure ulcers (PU) and deep tissue injuries (DTI), collectively known as pressure injuries are serious complications causing staggering costs and human suffering with over 200 reported risk factors from many domains. Primary pressure injury prevention seeks to prevent the first incidence, while secondary PU/DTI prevention aims to decrease chronic recurrence. Clinical practice guidelines (CPG) combine evidence-based practice and expert opinion to aid clinicians in the goal of achieving best practices for primary and secondary prevention. The correction of all risk factors can be both overwhelming and impractical to implement in clinical practice. There is a need to develop practical clinical tools to prioritize the multiple recommendations of CPG, but there is limited guidance on how to prioritize based on individual cases. Bioinformatics platforms enable data management to support clinical decision support and user-interface development for complex clinical challenges such as pressure injury prevention care planning.ObjectiveThe central hypothesis of the study is that the individual’s risk factor profile can provide the basis for adaptive, personalized care planning for PU prevention based on CPG prioritization. The study objective is to develop the Spinal Cord Injury Pressure Ulcer and Deep Tissue Injury (SCIPUD+) Resource to support personalized care planning for primary and secondary PU/DTI prevention.MethodsThe study is employing a retrospective electronic health record (EHR) chart review of over 75 factors known to be relevant for pressure injury risk in individuals with a spinal cord injury (SCI) and routinely recorded in the EHR. We also perform tissue health assessments of a selected sub-group. A systems approach is being used to develop and validate the SCIPUD+ Resource incorporating the many risk factor domains associated with PU/DTI primary and secondary prevention, ranging from the individual’s environment to local tissue health. Our multiscale approach will leverage the strength of bioinformatics applied to an established national EHR system. A comprehensive model is being used to relate the primary outcome of interest (PU/DTI development) with over 75 PU/DTI risk factors using a retrospective chart review of 5000 individuals selected from the study cohort of more than 36,000 persons with SCI. A Spinal Cord Injury Pressure Ulcer and Deep Tissue Injury Ontology (SCIPUDO) is being developed to enable robust text-mining for data extraction from free-form notes.ResultsThe results from this study are pending.ConclusionsPU/DTI remains a highly significant source of morbidity for individuals with SCI. Personalized interactive care plans may decrease both initial PU formation and readmission rates for high-risk individuals. The project is using established EHR data to build a comprehensive, structured model of environmental, social and clinical pressure injury risk factors. The comprehensive SCIPUD+ health care tool will be used to relate the primary outcome of interest (pressure injury developme...
Background The Kentucky Cancer Registry (KCR) is a central cancer registry for the state of Kentucky that receives data about incident cancer cases from all healthcare facilities in the state within 6 months of diagnosis. Similar to all other U.S. and Canadian cancer registries, KCR uses a data dictionary provided by the North American Association of Central Cancer Registries (NAACCR) for standardized data entry. The NAACCR data dictionary is not an ontological system. Mapping between the NAACCR data dictionary and the National Cancer Institute (NCI) Thesaurus (NCIt) will facilitate the enrichment, dissemination and utilization of cancer registry data. We introduce a web-based system, called Interactive Mapping Interface (IMI), for creating mappings from data dictionaries to ontologies, in particular from NAACCR to NCIt. Method IMI has been designed as a general approach with three components: (1) ontology library; (2) mapping interface; and (3) recommendation engine. The ontology library provides a list of ontologies as targets for building mappings. The mapping interface consists of six modules: project management, mapping dashboard, access control, logs and comments, hierarchical visualization, and result review and export. The built-in recommendation engine automatically identifies a list of candidate concepts to facilitate the mapping process. Results We report the architecture design and interface features of IMI. To validate our approach, we implemented an IMI prototype and pilot-tested features using the IMI interface to map a sample set of NAACCR data elements to NCIt concepts. 47 out of 301 NAACCR data elements have been mapped to NCIt concepts. Five branches of hierarchical tree have been identified from these mapped concepts for visual inspection. Conclusions IMI provides an interactive, web-based interface for building mappings from data dictionaries to ontologies. Although our pilot-testing scope is limited, our results demonstrate feasibility using IMI for semantic enrichment of cancer registry data by mapping NAACCR data elements to NCIt concepts.
BackgroundThe National Sleep Research Resource (NSRR) is a large-scale, openly shared, data repository of de-identified, highly curated clinical sleep data from multiple NIH-funded epidemiological studies. Although many data repositories allow users to browse their content, few support fine-grained, cross-cohort query and exploration at study-subject level. We introduce a cross-cohort query and exploration system, called X-search, to enable researchers to query patient cohort counts across a growing number of completed, NIH-funded studies in NSRR and explore the feasibility or likelihood of reusing the data for research studies.MethodsX-search has been designed as a general framework with two loosely-coupled components: semantically annotated data repository and cross-cohort exploration engine. The semantically annotated data repository is comprised of a canonical data dictionary, data sources with a data dictionary, and mappings between each individual data dictionary and the canonical data dictionary. The cross-cohort exploration engine consists of five modules: query builder, graphical exploration, case-control exploration, query translation, and query execution. The canonical data dictionary serves as the unified metadata to drive the visual exploration interfaces and facilitate query translation through the mappings.ResultsX-search is publicly available at https://www.x-search.net/with nine NSRR datasets consisting of over 26,000 unique subjects. The canonical data dictionary contains over 900 common data elements across the datasets. X-search has received over 1800 cross-cohort queries by users from 16 countries.ConclusionsX-search provides a powerful cross-cohort exploration interface for querying and exploring heterogeneous datasets in the NSRR data repository, so as to enable researchers to evaluate the feasibility of potential research studies and generate potential hypotheses using the NSRR data.
PURPOSE To audit and improve the completeness of the hierarchic (or is-a) relations of the National Cancer Institute (NCI) Thesaurus to support its role as a faceted system for querying cancer registry data. METHODS We performed quality auditing of the 19.01d version of the NCI Thesaurus. Our hybrid auditing method consisted of three main steps: computing nonlattice subgraphs, constructing lexical features for concepts in each subgraph, and performing subsumption reasoning with each subgraph to automatically suggest potentially missing is-a relations. RESULTS A total of 9,512 nonlattice subgraphs were obtained. Our method identified 925 potentially missing is-a relations in 441 nonlattice subgraphs; 72 of 176 reviewed samples were confirmed as valid missing is-a relations and have been incorporated in the newer versions of the NCI Thesaurus. CONCLUSION Autosuggested changes resulting from our auditing method can improve the structural organization of the NCI Thesaurus in supporting its new role for faceted query.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.