The broad EPR spectrum of Gd(III) spin labels restricts the dipolar modulation depth in distance measurements between Gd(III) pairs to a few percent. To overcome this limitation, frequency-swept chirp pulses are utilized as pump pulses in the DEER experiment. Using a model system with 3.4 nm Gd-Gd distance, application of one single chirp pump pulse at Q-band frequencies leads to modulation depths beyond 10%. However, the larger modulation depth is counteracted by a reduction of the absolute echo intensity due to the pump pulse. As supported by spin dynamics simulations, this effect is primarily driven by signal loss to double-quantum coherence and specific to the Gd(III) high spin state of S = 7/2. In order to balance modulation depth and echo intensity for optimum sensitivity, a simple experimental procedure is proposed. An additional improvement by 25% in DEER sensitivity is achieved with two consecutive chirp pump pulses. These pulses pump the Gd(III) spectrum symmetrically around the observation position, therefore mutually compensating for dynamical Bloch-Siegert phase shifts at the observer spins. The improved sensitivity of the DEER data with modulation depths on the order of 20% is due to mitigation of the echo reduction effects by the consecutive pump pulses. In particular, the second pump pulse does not lead to additional signal loss if perfect inversion is assumed. Moreover, the compensation of the dynamical Bloch-Siegert phase prevents signal loss due to spatial dependence of the dynamical phase, which is caused by inhomogeneities in the driving field. The new methodology is combined with pre-polarization techniques to measure long distances up to 8.6 nm, where signal intensity and modulation depth become attenuated by long dipolar evolution windows. In addition, the influence of the zero-field splitting parameters on the echo intensity is studied with simulations. Herein, larger sensitivity is anticipated for Gd(III) complexes with zero-field splitting that is smaller than for the employed Gd-PyMTA complex.
In order to enhance echo signals observed with selective pulses, equilibrium populations of the energy levels of S = 7/2 Gd(III) spin labels are rearranged with frequency-swept passage pulses. To transfer population from as many energy levels as possible, the 2 μs long passage pulses range over more than 1 GHz. Application of this technique at Q-band frequencies to three different Gd(III) complexes and spin dynamics simulations reveal large signal enhancements beyond 100% for Gd(III) complexes with zero-field splitting parameters below 1 GHz. For complexes with larger splittings, experimental enhancements are on the order of 90%. Moreover, population transfer is combined with distance measurements on a model system with a pair of Gd(III) ions. As a result, a signal enhancement of 85% is achieved without inducing changes in the obtained distance information. Besides this enhancement by population transfer, a dipolar modulation depth of 9% is demonstrated, which results in a total enhancement of 3.3 with respect to data obtained with monochromatic rectangular pulses. The limitations of the population transfer technique are discussed. In particular, the extraordinary broad pulse bandwidths caused heating effects and pulse distortions, which constrain the pulse length and thus the achievable signal enhancement.
Ti(iii) alkyl species polymerize ethylene via an original mechanism, which involves back donation to the π*(C2H4) and a delocalization of the unpaired electron in the transition state of C2H4 insertion into the partially alkylidenic Ti(iii)–C bond.
Nucleoside triphosphates (NTPs) are used as chemical energy source in a variety of cell systems. Structural snapshots along the NTP hydrolysis reaction coordinate are typically obtained by adding stable, nonhydrolyzable adenosine triphosphate (ATP) -analogues to the proteins, with the goal to arrest a state that mimics as closely as possible a physiologically relevant state, e.g., the pre-hydrolytic, transition and post-hydrolytic states. We here present the lessons learned on two distinct ATPases on the best use and unexpected pitfalls observed for different analogues. The proteins investigated are the bacterial DnaB helicase from Helicobacter pylori and the multidrug ATP binding cassette (ABC) transporter BmrA from Bacillus subtilis, both belonging to the same division of P-loop fold NTPases. We review the magnetic-resonance strategies which can be of use to probe the binding of the ATP-mimics, and present carbon-13, phosphorus-31, and vanadium-51 solid-state nuclear magnetic resonance (NMR) spectra of the proteins or the bound molecules to unravel conformational and dynamic changes upon binding of the ATP-mimics. Electron paramagnetic resonance (EPR), and in particular W-band electron-electron double resonance (ELDOR)-detected NMR, is of complementary use to assess binding of vanadate. We discuss which analogues best mimic the different hydrolysis states for the DnaB helicase and the ABC transporter BmrA. These might be relevant also to structural and functional studies of other NTPases.
The pulse EPR method ELDOR-detected NMR gives information about electron–electron couplings in Cu(ii) porphyrin dimers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.