Background: Treatment of metabolic acidosis to target the higher serum bicarbonate level than guideline recommendation may downregulate muscle protein degradation and improve renal function among chronic kidney disease (CKD) patients. We conducted a study to test the effects of increased serum bicarbonate level on muscle parameters, nutrition, and renal function in pre-dialysis CKD patients. Methods: This was a randomized, controlled study. CKD stage 3–4 patients with serum HCO3– <22 mEq/L were randomized to either receive oral sodium bicarbonate with high target bicarbonate level of 25 ± 1 or standard level of 22 ± 1 mEq/L as control group using protocol-based titration of dosage adjustment. The changes of muscle mass measured by bioelectrical impedance analysis (BIA), muscle strength by hand grip dynamometer, estimated glomerular filtration rate (eGFR) using CKD-Epidemiology Collaboration equation, nutritional markers, and muscle-related biomarkers were determined. Data at baseline and after 4 months of sodium bicarbonate supplementation were compared between groups using Student t test or chi-square test as appropriate. Results: Forty-two patients completed the study (n = 21 per group). The mean age and eGFR were 61.2 ± 9.8 years and 32.4 ± 14.1 mL/min respectively. Serum bicarbonate levels at baseline were 21.0 ± 2.1 mEq/L. Baseline data including sex, diabetes, serum bicarbonate level, creatinine, and blood pressure were similar. After 4 months of treatment, the average serum bicarbonate levels in both groups were 24.0 ± 1.4 and 20.7 ± 2.3 mEq/L (p < 0.001). Both BIA-derived total-body muscle mass and appendicular lean balance were increased at 4 months in the higher bicarbonate group (26.0 ± 5.3 to 26.7 ± 5.5 kg, p = 0.04 and 19.8 ± 4.1 to 20.7 ± 4.4 kg, p = 0.06, respectively) despite comparable body weight and protein intake. Patients in the high bicarbonate group had a significant reduction of plasma myostatin levels, a surrogate of muscle degradation, at the study exit after adjusting for baseline values (–3,137.8; 95% CI –6,235.3 to –40.4 pg/mL, p= 0.04), but unaltered insulin-like growth factor-1 level, as the mediator of muscle cell growth, (141 [106–156] to 110 [87–144] ng/mL, p = 0.13) compared to the control group. Muscle strength, eGFR as well as serum prealbumin were not significantly different between 2 groups (p > 0.05). Neither worsening hypertension nor congestive heart failure was found throughout the study. Conclusion: Bicarbonate supplementation to achieve the serum level ∼24 mEq/L demonstrates better muscle mass preservation in patients with pre-dialysis CKD. The impact of alkaline therapy on renal function may require a longer period of study.
BackgroundAlthough the prevalence of obesity and metabolic syndrome (MetS) among dialysis patients has been exceeding than general population, little is known regarding obesity and MetS in non-dialysis chronic kidney disease (CKD). We aimed to find the magnitude of obesity and MetS and their associations with impaired renal function among type 2 diabetes mellitus (T2DM) patients.MethodsA national survey of T2DM patients was collected in the Thai National Health Security Office database during 2014–5. The sampling frame was designated as distinct geographic regions throughout the country. A stratified two-stage cluster sampling was used to select the study population. Anthropometry and 12-hour fasting blood samples were obtained by trained personnel. BMI of ≥25 kg/m2 was classified as obesity. MetS was defined as having elevated waist circumference (>90 and >80 cm in men and women, respectively) plus any two of the followings: triglyceride ≥150 mg/dL, HDL-C <40 in men or <50 mg/dL in women, blood pressure ≥130/85 mmHg, and fasting blood sugar ≥100 mg/dL. CKD was defined as an impaired renal function (eGFR <60 mL/min/1.73m2 according to the CKD-EPI equation). Logistic regression analysis was performed to examine the relationship between obesity and MetS with the presence of CKD.ResultsA total of 32,616 diabetic patients were finally recruited from 997 hospitals. The mean age was 61.5±10.9 years with 67.5% women. Of the participants, 35.4% were CKD patients. The prevalence of obesity was 46.5% in CKD and 54.1% in non-CKD patients with T2DM (p<0.001). In contrast, the prevalence of MetS in CKD patients was higher than their non-CKD counterparts (71.3 vs 68.8%, p<0.001). Moreover, there was an association between the prevalence of MetS with CKD stage from 3a to 5 (70.1, 72.3, 73.4, and 72.7%, respectively, p trend = 0.02). MetS, but not obesity, had a significant association with CKD in T2DM patients after adjusting for age, sex, and comorbidities [OR 1.14; 95% CI 1.06–1.22, p<0.001]. When stratified by each component of MetS, only high serum triglyceride and low HDL-C levels were increased in patients with CKD stage 4 and 5 compared with CKD stage 3 (p<0.001) and had a significant relationship with impaired renal function.ConclusionThere were relatively high prevalences of both obesity and MetS in T2DM patients. A higher prevalence of MetS, but lower prevalence of obesity, was observed among diabetic CKD group compared with their non-CKD counterparts. MetS, as a surrogate of insulin resistance, appeared to be more important than obesity in the development of impaired renal function in diabetic population.
Patients with head and neck squamous cell carcinoma are at increased risk of developing a second primary malignancy, which is associated with poor prognosis and early death. To help improve clinical outcome, we aimed to identify biomarkers for second primary malignancy risk prediction using the routinely obtained formalin-fixed paraffin-embedded tissues of the index head and neck cancer. Liquid chromatography-tandem mass spectrometry was initially performed for candidate biomarker discovery in 16 pairs of primary cancer tissues and their matched normal mucosal epithelia from head and neck squamous cell carcinoma patients with or without second primary malignancy. The 32 candidate proteins differentially expressed between head and neck cancers with and without second primary malignancy were identified. Among these, 30 selected candidates and seven more from literature review were further studied using NanoString nCounter gene expression assay in an independent cohort of 49 head and neck cancer patients. Focusing on the p16-negative cases, we showed that a multivariate logistic regression model comprising the expression levels of ITPR3, KMT2D, EMILIN1, and the patient's age can accurately predict second primary malignancy occurrence with 88% sensitivity and 75% specificity. Furthermore, using Cox proportional hazards regression analysis and survival analysis, high expression levels of ITPR3 and DSG3 were found to be significantly associated with shorter time to second primary malignancy development (log-rank test P = 0.017). In summary, we identified a set of genes whose expressions may serve as the prognostic biomarkers for second primary malignancy occurrence in head and neck squamous cell carcinomas. In combination with the histopathologic examination of index tumor, these biomarkers can be used to guide the optimum frequency of second primary malignancy surveillance, which may lead to early diagnosis and better survival outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.