Growth and reproduction of spring ephemerals inhabiting deciduous forests progress simultaneously during a short period from snowmelt to canopy closure. To clarify the mechanism to mitigate the cost of reproduction, contributions of foliar and non-foliar photosynthetic products to seed production were examined in a spring ephemeral Gagea lutea. Leaf growth, foliar and non-foliar photosynthetic activities, and total assimilated products were compared among reproductive-intact, floral-bud removal and vegetative plants. Translocation of current photosynthetic products to individual organs was quantified by 13CO2-trace experiment. Bulb growth was compared between hand-pollination and floral-bud removal treatments. Finally, seed set was compared between intact, leaf-clipping and bract-clipping treatments. Fruit-forming plants retained leaves longer than vegetative and floral-bud removal plants, but the assimilative contribution of extended leaf longevity was negligible. Carbon supply by bract photosynthesis was large enough for fruit development, while carbon supply by fruit photosynthesis was offset by the high respiration loss. Foliar photosynthetic products were largely transported to bulbs, while translocation to reproductive functions was negligible. Because the floral-bud removal increased the bulb growth, lack of reproduction could lead to more storage. The leaf-clipping had no effect on seed production, while the bract-clipping significantly reduced the seed production. Therefore, current photosynthesis of leafy bracts might be a major carbon source for fruit development. This self-compensative mechanism of reproductive structure enables the continuous reproductive activity in this species
The responses of reproduction and growth to climate warming are important issues to predict the fate of plant populations at high latitudes. Spring ephemerals inhabiting cool-temperate forests grow better under cool conditions, but how reproductive performance is influenced by warm weather is unclear. The phenological and physiological responses of reproduction and vegetative growth to warm temperature and light conditions were evaluated in the spring ephemeral Gagea lutea. Leaf and bract physiological activities, bulb growth, and seed production were compared among reproductive plants grown in forest, open, and greenhouse (GH; warming manipulation in the open site) plots. In vitro pollen germination ability was tested under various temperatures. In the GH, leaf and bract photosynthetic activities decreased rapidly at the fruiting stage, but dark respiration rates remained high, resulting in higher carbon exhaust in warm conditions. Both leaf and bract sizes and their longevities were reduced in the GH. Annual bulb growth was largest in the forest plot and smallest in the GH plot. Pollen germination was strongly inhibited at high temperature (30 degrees C). Fruit and seed productions were decreased only in the GH plot. Both vegetative and reproductive activities were negatively affected by warm temperature, resulting in less vegetative growth and lower seed-set, whereas an understory habitat was beneficial for vegetative growth and showed similar seed production to an open habitat over the experimental period. Decreasing population dynamics of spring ephemerals was predicted in response to future warming climate not only by growth inhibition but also by restriction of seed production
Spring ephemeral herbs inhabiting deciduous forests commonly complete reproduction and vegetative growth before canopy closure in early summer. Effects of shading by early canopy closure on reproductive output and vegetative growth, however, may vary depending on the seasonal allocation patterns of photosynthetic products between current reproduction and storage for future growth in each species. To clarify the effects of sink-source balance on seed production and bulb growth in a spring ephemeral herb, Gagea lutea, we performed a bract removal treatment (source reduction) and a floral-bud removal treatment (sink reduction) under canopy and open conditions. Leaf carbon fixations did not differ between the forest and open sites and among treatments. Bract carbon fixations were also similar between sites but tended to decrease when floral buds were removed. Seed production was higher under open condition but decreased by the bract-removal treatment under both light conditions. In contrast, bulb growth was independent of light conditions and the bract-removal treatment but increased greatly by the bud-removal treatment. Therefore, leaves and bracts acted as specialized source organs for vegetative and reproductive functions, respectively, but photosynthetic products by bracts were flexibly used for bulb growth when plants failed to set fruits. Extension of bright period was advantageous for seed production (i.e., source limited) but not for vegetative growth (i.e., sink limited) in this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.