The microstructural-scale mechanisms that produce cracks in metals during deformation at elevated temperatures are relevant to applications that involve thermal exposure. Prior studies of cavitation during high-temperature deformation, for example, creep, suffered from an inability to directly observe the microstructural evolution that occurs during deformation and leads to void nucleation. The current study takes advantage of modern high-speed electron backscatter diffraction (EBSD) detectors to observe cavitation in oxygen-free, high-conductivity copper in situ during deformation at 300 C. Most voids formed at the triple junction between a twin boundary and a high-angle grain boundary (HAGB). This finding does not contradict previous studies that suggested that twins are resistant to cracking-it reveals that cracks in HAGBs originate at twin/HAGB triple junctions and that cracks preferentially grow along HAGBs rather than the accompanying twins. Atomistic simulations explored the origins of this observation and suggest that twin/HAGB triple junctions are microstructural weak points.
A novel Monte Carlo (MC) based solver for discrete dislocation dynamics (DDD) has been developed, by which dislocation lines are inserted to the system in succession subject to a user-defined acceptance criterion. Utilizing this solver, dislocation structure evolution can be examined in a controlled fashion that is not possible using conventional DDD methods. The outcomes of the MC-DDD simulations establish for the first time that dislocation wall structures can adopt a characteristic width that naturally arises from elastic interactions within the network. This characteristic width does not alter as additional dislocation lines are inserted and the density in the wall increases, meaning it is independent of the mean dislocation spacing. However, the wall width is influenced by the acceptance criterion used during MC steps; the wall gets thinner as the interactions within the wall become more attractive. Finally, we demonstrate that algorithmic aspects of MC-DDD simulations can provide insights into structure evolution. Overall, this new MC-DDD technique will allow systematic studies of dislocation structures, providing unprecedented insight into the underlying mechanics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.