Abstract-This research aims to enhance the achievement of the students on their study plan. The problem of the students in the university is that some students cannot design the efficient study plan, and this can cause the failure of studying. Machine Learning techniques are very powerful technique, and they can be adopted to solve this problem. Therefore, we developed our techniques and analyzed data from 300 samples by obtaining their grades of students from subjects in the curriculum of Computer Science, Faculty of Science and Technology, Sakon Nakhon Rajabhat University. In this research, we deployed CGPA prediction models and Kmeans models on 3 rd -year and 4 th -year students. The results of the experiment show high performance of these models. 37 students as representative samples were classified for their clusters and were predicted for CGPA. After sample classification, samples can inspect all vectors in their clusters as feasible study plans for next semesters. Samples can select a study plan and predict to achieve their desired CGPA. The result shows that the samples have significant improvement in CGPA by applying self-adaptive learning according to selected study plan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.