The model demonstrates that under the above conditions, diffusive gas transfer in relation to blood gas content is the leading mechanism to alterations in ME pressure and volume. It may be used as a tool to determine ME physiological cavity volume of ears with VT.
The purpose of the current study was to test sound localization of a spoken word, rarely studied in the context of localization, compared to pink noise and a gunshot, while taking into account the source position and the effect of different hearing protection devices (HPDs) used by the listener. Ninety participants were divided into three groups using different HPDs. Participants were tested twice, under with- and no-HPD conditions, and were requested to localize the different stimuli that were delivered from one of eight speakers evenly distributed around them (starting from 22.5°). Localization of the word stimulus was more difficult than that of the other stimuli. HPD usage resulted in a larger mean root-mean-square error (RMSE) and increased mirror image reversal errors for all stimuli. In addition, HPD usage increased the mean RMSE and mirror image reversal errors for stimuli delivered from the front and back, more than for stimuli delivered from the left and right. HPDs affect localization, both due to attenuation and to limitation of pinnae cues when using earmuffs. Difficulty localizing the spoken word should be considered when assessing auditory functionality and should be further investigated to include HPDs with different attenuation spectra and levels, and to further types of speech stimuli.
AAT is a common military injury, and should be diagnosed early to minimize associated morbidity. HPDs were proven to be effective in preventing and minimizing AAT hearing sequelae. Steroid treatment was effective in AAT injury, if initiated within 7 days after noise exposure.
A common complaint of the hearing impaired is the inability to understand speech in noisy environments even with their hearing assistive devices. Only a few single-channel algorithms have significantly improved speech intelligibility in noise for hearing-impaired listeners. The current study introduces a cochlear noise reduction algorithm. It is based on a cochlear representation of acoustic signals and real-time derivation of a binary speech mask. The contribution of the algorithm for enhancing word recognition in noise was evaluated on a group of 42 normal-hearing subjects, 35 hearing-aid users, 8 cochlear implant recipients, and 14 participants with bimodal devices. Recognition scores of Hebrew monosyllabic words embedded in Gaussian noise at several signal-to-noise ratios (SNRs) were obtained with processed and unprocessed signals. The algorithm was not effective among the normal-hearing participants. However, it yielded a significant improvement in some of the hearing-impaired subjects under different listening conditions. Its most impressive benefit appeared among cochlear implant recipients. More than 20% improvement in recognition score of noisy words was obtained by 12, 16, and 26 hearing-impaired at SNR of 30, 24, and 18 dB, respectively. The algorithm has a potential to improve speech intelligibility in background noise, yet further research is required to improve its performances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.