Despite the fact that deep neural networks are powerful models and achieve appealing results on many tasks, they are too large to be deployed on edge devices like smartphones or embedded sensor nodes. There have been efforts to compress these networks, and a popular method is knowledge distillation, where a large (teacher) pre-trained network is used to train a smaller (student) network. However, in this paper, we show that the student network performance degrades when the gap between student and teacher is large. Given a fixed student network, one cannot employ an arbitrarily large teacher, or in other words, a teacher can effectively transfer its knowledge to students up to a certain size, not smaller. To alleviate this shortcoming, we introduce multi-step knowledge distillation, which employs an intermediate-sized network (teacher assistant) to bridge the gap between the student and the teacher. Moreover, we study the effect of teacher assistant size and extend the framework to multi-step distillation. Theoretical analysis and extensive experiments on CIFAR-10,100 and ImageNet datasets and on CNN and ResNet architectures substantiate the effectiveness of our proposed approach.
Reinforcement learning (RL) has proven its worth in a series of artificial domains, and is beginning to show some successes in real-world scenarios. However, much of the research advances in RL are hard to leverage in real-world systems due to a series of assumptions that are rarely satisfied in practice. In this work, we identify and formalize a series of independent challenges that embody the difficulties that must be addressed for RL to be commonly deployed in real-world systems. For each challenge, we define it formally in the context of a Markov Decision Process, analyze the effects of the challenge on state-of-the-art learning algorithms, and present some existing attempts at tackling it. We believe that an approach that addresses our set of proposed challenges would be readily deployable in a large number of real world problems. Our proposed challenges are implemented in a suite of continuous control environments called realworldrl-suite which we propose an as an open-source benchmark.
Despite the fact that deep neural networks are powerful models and achieve appealing results on many tasks, they are too large to be deployed on edge devices like smartphones or embedded sensor nodes. There have been efforts to compress these networks, and a popular method is knowledge distillation, where a large (teacher) pre-trained network is used to train a smaller (student) network. However, in this paper, we show that the student network performance degrades when the gap between student and teacher is large. Given a fixed student network, one cannot employ an arbitrarily large teacher, or in other words, a teacher can effectively transfer its knowledge to students up to a certain size, not smaller. To alleviate this shortcoming, we introduce multi-step knowledge distillation, which employs an intermediate-sized network (teacher assistant) to bridge the gap between the student and the teacher. Moreover, we study the effect of teacher assistant size and extend the framework to multi-step distillation. Theoretical analysis and extensive experiments on CIFAR-10,100 and ImageNet datasets and on CNN and ResNet architectures substantiate the effectiveness of our proposed approach.
ABSTRACTe session search task aims at best serving the user's information need given her previous search behavior during the session. We propose an extended relevance model that captures the user's dynamic information need in the session. Our relevance modelling approach is directly driven by the user's query reformulation (change) decisions and the estimate of how much the user's search behavior a ects such decisions. Overall, we demonstrate that, the proposed approach signi cantly boosts session search performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.