It has been shown recently that the performance of greedy best-first search (GBFS) for computing plans that are not necessarily optimal can be improved by adding forms of exploration when reaching heuristic plateaus: from random walks to local GBFS searches. In this work, we address this problem but using structural exploration methods resulting from the ideas of width-based search. Width-based methodsseek novel states, are not goal oriented, and their power has been shown recently in the Atari and GVG-AI video-games. We show first that width-based exploration in GBFS is more effective than GBFS with local GBFS search (GBFS-LS), and then proceed to formulate a simple and general computational framework where standard goal-oriented search (exploitation) and width-based search (structural exploration) are combined to yield a search scheme, best-first width search, that is better than both and which results in classical planning algorithms that outperform the state-of-the-art planners.
Classical planning is concerned with problems where a goal needs to be reached from a known initial state by doing actions with deterministic, known effects. Classical planners, however, deal only with classical problems that can be expressed in declarative planning languages such as STRIPS or PDDL. This prevents their use on problems that are not easy to model declaratively or whose dynamics are given via simulations. Simulators do not provide a declarative representation of actions, but simply return successor states. The question we address in this paper is: can a planner that has access to the structure of states and goals only, approach the performance of planners that also have access to the structure of actions expressed in PDDL? To answer this, we develop domain-independent, black box planning algorithms that completely ignore action structure, and show that they match the performance of state-of-the-art classical planners on the standard planning benchmarks. Effective black box algorithms open up new possibilities for modeling and for expressing control knowledge, which we also illustrate.
Bushfires are increasing in number and intensity due to climate change. A newly developed low-cost electronic nose (e-nose) was tested on wines made from grapevines exposed to smoke in field trials. E-nose readings were obtained from wines from five experimental treatments: (i) low-density smoke exposure (LS), (ii) high-density smoke exposure (HS), (iii) high-density smoke exposure with in-canopy misting (HSM), and two controls: (iv) control (C; no smoke treatment) and (v) control with in-canopy misting (CM; no smoke treatment). These e-nose readings were used as inputs for machine learning algorithms to obtain a classification model, with treatments as targets and seven neurons, with 97% accuracy in the classification of 300 samples into treatments as targets (Model 1). Models 2 to 4 used 10 neurons, with 20 glycoconjugates and 10 volatile phenols as targets, measured: in berries one hour after smoke (Model 2; R = 0.98; R2 = 0.95; b = 0.97); in berries at harvest (Model 3; R = 0.99; R2 = 0.97; b = 0.96); in wines (Model 4; R = 0.99; R2 = 0.98; b = 0.98). Model 5 was based on the intensity of 12 wine descriptors determined via a consumer sensory test (Model 5; R = 0.98; R2 = 0.96; b = 0.97). These models could be used by winemakers to assess near real-time smoke contamination levels and to implement amelioration strategies to minimize smoke taint in wines following bushfires.
We define a probe to be a single action sequence computedgreedily from a given state that either terminates in the goalor fails. We show that by designing these probes carefullyusing a number of existing and new polynomial techniquessuch as helpful actions, landmarks, commitments, and con-sistent subgoals, a single probe from the initial state solvesby itself 683 out of 980 problems from previous IPCs, a num-ber that compares well with the 627 problems solved by FFin EHC mode, with similar times and plan lengths. We alsoshow that by launching one probe from each expanded statein a standard greedy best first search informed by the addi-tive heuristic, the number of problems solved jumps to 900(92%), as opposed to FF that solves 827 problems (84%),and LAMA that solves 879 (89%). The success of probessuggests that many domains can be solved easily once a suit-able serialization of the landmarks is found, an observationthat may open new connections between recent work in plan-ning and more classical work concerning goal serializationand problem decomposition in planning and search.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.