The pre-scission and post-scission neutron multiplicities are measured for the 18O + 184W reaction in the excitation energy range of 67.23−76.37 MeV. Langevin dynamical calculations are performed to infer the energy dependence of fission decay time in compliance with the measured neutron multiplicities. Different models for nuclear dissipation are employed for this purpose. Fission process is usually expected to be faster at a higher beam energy. However, we found an enhancement in the average fission time as the incident beam energy increases. It happens because a higher excitation energy helps more neutrons to evaporate that eventually stabilizes the system against fission. The competition between fission and neutron evaporation delicately depends on the available excitation energy and it is explained here with the help of the partial fission yields contributed by the different isotopes of the primary compound nucleus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.