Advances in ultrathin, skin-like electronics lead to wearable devices for continuous, noninvasive blood flow monitoring.
Purpose: Indirect-detection CMOS flat-panel detectors (FPDs) offer fine pixel pitch, fast readout, and low electronic noise in comparison to current a-Si:H FPDs. This work investigates the extent to which these potential advantages affect imaging performance in mobile C-arm fluoroscopy and cone-beam CT (CBCT). Methods: FPDs based on CMOS (Xineos 3030HS, 0.151 mm pixel pitch) or a-Si:H (PaxScan 3030X, 0.194 mm pixel pitch) sensors were outfitted on equivalent mobile C-arms for fluoroscopy and CBCT. Technical assessment of 2D and 3D imaging performance included measurement of electronic noise, gain, lag, modulation transfer function (MTF), noise-power spectrum (NPS), detective quantum efficiency (DQE), and noise-equivalent quanta (NEQ) in fluoroscopy (with entrance air kerma ranging 5 - 800 nGy per frame) and cone-beam CT (with weighted CT dose index, CTDIw, ranging 0.08 – 1 mGy). Image quality was evaluated by clinicians in vascular, orthopaedic, and neurological surgery in realistic interventional scenarios with cadaver subjects emulating a variety of 2D and 3D imaging tasks. Results: The CMOS FPD exhibited ~2-3× lower electronic noise and ~7× lower image lag than the a-Si:H FPD. The 2D (projection) DQE was superior for CMOS at ≤50 nGy per frame, especially at high spatial frequencies (~2% improvement at 0.5 mm−1 and ≥50% improvement at 2.3 mm−1) and was somewhat inferior at moderate-high doses (up to 18% lower DQE for CMOS at 0.5 mm−1). For smooth CBCT reconstructions (low-frequency imaging tasks), CMOS exhibited ~10-20% higher NEQ (at 0.1-0.5 mm−1) at the lowest dose levels (CTDIw ≤0.1 mGy), while the a-Si:H system yielded slightly (~5%) improved NEQ (at 0.1-0.5 lp/mm) at higher dose levels (CTDIw ≥ 0.6 mGy). For sharp CBCT reconstructions (high-frequency imaging tasks), NEQ was ~32% higher above 1 mm−1 for the CMOS system at mid-high dose levels and ≥75% higher at the lowest dose levels (CTDIw ≤0.1 mGy). Observer assessment of 2D and 3D cadaver images corroborated the objective metrics with respect to a variety of pertinent interventional imaging tasks. Conclusion: Measurements of image noise, spatial resolution, DQE, and NEQ indicate improved low-dose performance for the CMOS-based system, particularly at lower doses and higher spatial frequencies. Assessment in realistic imaging scenarios confirmed improved visibility of fine details in low-dose fluoroscopy and CBCT. The results quantify the extent to which CMOS detectors improve mobile C-arm imaging performance, especially in 2D and 3D imaging scenarios involving high-resolution tasks and low-dose conditions.
Purpose To characterize the radiation dose and three‐dimensional (3D) imaging performance of a recently developed mobile, isocentric C‐arm equipped with a flat‐panel detector (FPD) for intraoperative cone‐beam computed tomography (CBCT) (Cios Spin 3D, Siemens Healthineers) and to identify potential improvements in 3D imaging protocols for pertinent imaging tasks. Methods The C‐arm features a 30 × 30 cm2 FPD and isocentric gantry with computer‐controlled motorization of rotation (0–195°), angulation (±220°), and height (0–45 cm). Geometric calibration was assessed in terms of 9 degrees of freedom of the x‐ray source and detector in CBCT scans, and the reproducibility of geometric calibration was evaluated. Standard and custom scan protocols were evaluated, with variation in the number of projections (100–400) and mAs per view (0.05–1.65 mAs). Image reconstruction was based on 3D filtered backprojection using “smooth,” “normal,” and “sharp” reconstruction filters as well as a custom, two‐dimensional 2D isotropic filter. Imaging performance was evaluated in terms of uniformity, gray value correspondence with Hounsfield units (HU), contrast, noise (noise‐power spectrum, NPS), spatial resolution (modulation transfer function, MTF), and noise‐equivalent quanta (NEQ). Performance tradeoffs among protocols were visualized in anthropomorphic phantoms for various anatomical sites and imaging tasks. Results Geometric calibration showed a high degree of reproducibility despite ~19 mm gantry flex over a nominal semicircular orbit. The dose for a CBCT scan varied from ~0.8–4.7 mGy for head protocols to ~6–38 mGy for body protocols. The MTF was consistent with sub‐mm spatial resolution, with f10 (frequency at which MTF = 10%) equal to 0.64 mm−1, 1.0 mm−1, and 1.5 mm−1 for smooth, standard, and sharp filters respectively. Implementation of a custom 2D isotropic filter improved CNR ~ 50–60% for both head and body protocols and provided more isotropic resolution and noise characteristics. The NPS and NEQ quantified the 3D noise performance and provided a guide to protocol selection, confirmed in images of anthropomorphic phantoms. Alternative scan protocols were identified according to body site and task — for example, lower‐dose body protocols (<3 mGy) sufficient for visualization of bone structures. Conclusion The studies provided objective assessment of the dose and 3D imaging performance of a new C‐arm, offering an important basis for clinical deployment and a benchmark for quality assurance. Modifications to standard 3D imaging protocols were identified that may improve performance or reduce radiation dose for pertinent imaging tasks.
Metal artifacts present a challenge to cone-beam CT (CBCT) image-guided surgery, obscuring visualization of metal instruments and adjacent anatomy—often in the very region of interest pertinent to the imaging/surgical tasks. We present a method to reduce the influence of metal artifacts by prospectively defining an image acquisition protocol—viz., the C-arm source-detector orbit—that mitigates metal-induced biases in the projection data. The metal artifact avoidance (MAA) method is compatible with simple mobile C-arms, does not require exact prior information on the patient or metal implants, and is consistent with 3D filtered backprojection (FBP), more advanced (e.g. polyenergetic) model-based image reconstruction (MBIR), and metal artifact reduction (MAR) post-processing methods. The MAA method consists of: (i) coarse localization of metal objects in the field-of-view (FOV) via two or more low-dose scout projection views and segmentation (e.g. a simple U-Net) in coarse backprojection; (ii) model-based prediction of metal-induced x-ray spectral shift for all source-detector vertices accessible by the imaging system (e.g. gantry rotation and tilt angles); and (iii) identification of a circular or non-circular orbit that reduces the variation in spectral shift. The method was developed, tested, and evaluated in a series of studies presenting increasing levels of complexity and realism, including digital simulations, phantom experiment, and cadaver experiment in the context of image-guided spine surgery (pedicle screw implants). The MAA method accurately predicted tilted circular and non-circular orbits that reduced the magnitude of metal artifacts in CBCT reconstructions. Realistic distributions of metal instrumentation were successfully localized (0.71 median Dice coefficient) from 2–6 low-dose scout views even in complex anatomical scenes. The MAA-predicted tilted circular orbits reduced root-mean-square error (RMSE) in 3D image reconstructions by 46%–70% and ‘blooming’ artifacts (apparent width of the screw shaft) by 20–45%. Non-circular orbits defined by MAA achieved a further ∼46% reduction in RMSE compared to the best (tilted) circular orbit. The MAA method presents a practical means to predict C-arm orbits that minimize spectral bias from metal instrumentation. Resulting orbits—either simple tilted circular orbits or more complex non-circular orbits that can be executed with a motorized multi-axis C-arm—exhibited substantial reduction of metal artifacts in raw CBCT reconstructions by virtue of higher fidelity projection data, which are in turn compatible with subsequent MAR post-processing and/or polyenergetic MBIR to further reduce artifacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.