Lipopeptide biosurfactants (LPBSs) consist of a hydrophobic fatty acid portion linked to a hydrophilic peptide chain in the molecule. With their complex and diverse structures, LPBSs exhibit various biological activities including surface activity as well as anti-cellular and anti-enzymatic activities. LPBSs are also involved in multi-cellular behaviors such as swarming motility and biofilm formation. Among the bacterial genera, Bacillus (Gram-positive) and Pseudomonas (Gram-negative) have received the most attention because they produce a wide range of effective LPBSs that are potentially useful for agricultural, chemical, food, and pharmaceutical industries. The biosynthetic mechanisms and gene regulation systems of LPBSs have been extensively analyzed over the last decade. LPBSs are generally synthesized in a ribosome-independent manner with megaenzymes called nonribosomal peptide synthetases (NRPSs). Production of active-form NRPSs requires not only transcriptional induction and translation but also post-translational modification and assemblage. The accumulated knowledge reveals the versatility and evolutionary lineage of the NRPSs system. This review provides an overview of the structural and functional diversity of LPBSs and their different biosynthetic mechanisms in Bacillus and Pseudomonas, including both typical and unique systems. Finally, successful genetic engineering of NRPSs for creating novel lipopeptides is also discussed.
Arthrofactin is a potent cyclic lipopeptide-type biosurfactant produced by Pseudomonas sp. MIS38. In this work, an arthrofactin synthetase gene cluster (arf) spanning 38.7 kb was cloned and characterized. Three genes termed arfA, arfB, and arfC encode ArfA, ArfB, and ArfC, containing two, four, and five functional modules, respectively. Each module bears condensation, adenylation, and thiolation domains, like other nonribosomal peptide synthetases. However, unlike most of them, none of the 11 modules possess the epimerization domain responsible for the conversion of amino acid residues from L to D form. Possible L- and D-Leu adenylation domains specifically recognized only L-Leu. Moreover, two thioesterase domains are tandemly located at the C-terminal end of ArfC. These results suggest that ArfA, ArfB, and ArfC assemble to form a unique structure. Gene disruption of arfB impaired arthrofactin production, reduced swarming activity, and enhanced biofilm formation.
Pactamycin is an aminocyclopentitol-derived natural product that has potent antibacterial and antitumor activities. Sequence analysis of an 86 kb continuous region of the chromosome from Streptomyces pactum ATCC 27456 revealed a gene cluster involved in the biosynthesis of pactamycin. Gene inactivation of the Fe-S radical SAM oxidoreductase (ptmC) and the glycosyltransferase (ptmJ), individually abrogated pactamycin biosynthesis; this confirmed the involvement of the ptm gene cluster in pactamycin biosynthesis. The polyketide synthase gene (ptmQ) was found to support 6-methylsalicylic acid (6-MSA) synthesis in a heterologous host, S. lividans T7. In vivo inactivation of ptmQ in S. pactum impaired pactamycin and pactamycate production but led to production of two new pactamycin analogues, de-6-MSA-pactamycin and de-6-MSA-pactamycate. The new compounds showed equivalent cytotoxic and antibacterial activities with the corresponding parent molecules and shed more light on the structure-activity relationship of pactamycin.
Pactamycin, one of the most densely functionalized aminocyclitol antibiotics, has pronounced antibacterial, antitumor, antiviral, and antiplasmodial activities, but its development as a clinical drug was hampered by its broad cytotoxicity. Efforts to modulate the biological activity by structural modifications using synthetic organic chemistry have been difficult because of the complexity of its chemical structure. However, through extensive biosynthetic studies and genetic engineering, we were able to produce analogs of pactamycin that show potent antimalarial activity, but lack significant antibacterial activity, and are about 10-30 times less toxic than pactamycin toward mammalian cells. The results suggest that distinct ribosomal binding selectivity or new mechanism(s) of action may be involved in their plasmodial growth inhibition, which may lead to the discovery of new antimalarial drugs and identification of new molecular targets within malarial parasites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.