Analysis of long-term rainfall trends provides a wealth of information on effective crop planning and water resource management, and a better understanding of climate variability over time. This study reveals the spatial variability of rainfall trends in Sri Lanka from 1989 to 2019 as an indication of climate change. The exclusivity of the study is the use of rainfall data that provide spatial variability instead of the traditional location-based approach. Henceforth, daily rainfall data available at Climate Hazards Group InfraRed Precipitation corrected with stations (CHIRPS) data were used for this study. The geographic information system (GIS) is used to perform spatial data analysis on both vector and raster data. Sen's slope estimator and the Mann–Kendall (M–K) test are used to investigate the trends in annual and seasonal rainfall throughout all districts and climatic zones of Sri Lanka. The most important thing reflected in this study is that there has been a significant increase in annual rainfall from 1989 to 2019 in all climatic zones (wet, dry, intermediate, and Semi-arid) of Sri Lanka. The maximum increase is recorded in the wet zone and the minimum increase is in the semi-arid zone. There could be an increased risk of floods in the southern and western provinces in the future, whereas areas in the eastern and southeastern districts may face severe droughts during the northeastern monsoon. It is advisable to introduce effective drought and flood management and preparedness measures to reduce the respective hazard risk levels.
Floods cause catastrophic destruction to life and livelihood in South Asia than any other parts of the world. This research assessed long term (2001 to 2015) flood risk at South Asia level using eight-day Moderate Resolution Imaging Spectroradiometer data and subsequently expanded this methodology to identify potential zones for piloting flood index insurance scheme in Bihar, India. Bihar was further assessed for sub-regional segmentation of its 37 districts into four flood risk zones based on k-means clustering and Getis-Ord Gi à analysis of multi-modal dataset consisting of demographics, meteorological, agricultural, flood characteristics and economic loss from floods. Satellite based risk assessment identified parts of Indus basin in Pakistan, Ganges basin in North India and majority of Bangladesh as flood hotspots. Site prioritization for flood index insurance in Bihar identified Madhubani, Darbhanga, Muzaffarpur and Sitamarhi districts as very high flood risk districts by both methods signifying large impact of any potential interventions implemented in these districts.
For Sri Lanka, as an agricultural country, a methodical drought monitoring mechanism, including spatial and temporal variations, may significantly contribute to its agricultural sustainability. Investigating long-term meteorological and agricultural drought occurrences in Sri Lanka and assessing drought hazard at the district level are the main objectives of the study. Standardized Precipitation Index (SPI), Rainfall Anomaly Index (RAI), and Vegetation Health Index (VHI) were used as drought indicators to investigate the spatial and temporal distribution of agriculture and metrological droughts. Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) data from 1989 to 2019 was used to calculate SPI and RAI. MOD13A1 and MOD11A2 data from Moderate Resolution Imaging Spectroradiometer (MODIS) from 2001 to 2019, were used to generate the Vegetation Condition Index (VCI) and Temperature Condition Index (TCI). Agricultural drought monitoring was done using VHI and generated using the spatial integration of VCI and TCI. Thus, various spatial data analysis techniques were extensively employed for vector and raster data integration and analysis. A methodology has been developed for the drought declaration of the country using the VHI-derived drought area percentage. Accordingly, for a particular year, if the country-wide annual extreme and severe drought area percentage based on VHI drought classes is ≥30%, it can be declared as a drought year. Moreover, administrative districts of Sri Lanka were classified into four hazard classes, No drought, Low drought, Moderate drought, and High drought, using the natural-beak classification scheme for both agricultural and metrological droughts. The findings of this study can be used effectively by the relevant decision-makers for drought risk management (DRM), resilience, sustainable agriculture, and policymaking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.