A review of literature on the development of sensorineural hearing loss after high-dose radiation therapy for head-and-neck tumors and stereotactic radiosurgery or fractionated stereotactic radiotherapy for the treatment of vestibular schwannoma is presented. Because of the small volume of the cochlea a dose-volume analysis is not feasible. Instead, the current literature on the effect of the mean dose received by the cochlea and other treatment-and patient-related factors on outcome are evaluated. Based on the data, a specific threshold dose to cochlea for sensorineural hearing loss cannot be determined; therefore, dose-prescription limits are suggested. A standard for evaluating radiation therapy-associated ototoxicity as well as a detailed approach for scoring toxicity is presented. KeywordsRadiotherapy; Sensorineural hearing loss; Ototoxicity; Auditory; Ear; QUANTEC CLINICAL SIGNIFICANCERadiation therapy (RT) may damage the cochlea and/or acoustic nerve, leading to sensorineural hearing loss (SNHL) (1-4), with resultant long-lasting compromise in the quality of life. This report focuses on RT-induced SNHL in adults who have received fractionated RT, stereotactic radiosurgery (SRS), and fractionated stereotactic RT (FSRT) for head-and-neck cancers and vestibular schwannomas (VS). ENDPOINTSSNHL is traditionally defined as a clinically significant increase in bone conduction threshold (BCT) at the key human speech frequencies (0.5-4.0 kHz), as seen in pure-tone audiometry. However, reports of SNHL after fractionated RT vary in terms of: (a) the frequencies evaluated (e.g., 2 or 4 kHz alone (5,6) and/or pure tone average [PTA] of
The purpose of this study is to establish a comprehensive set of dose measurements data obtained from the X-ray Volumetric Imager (XVI, Elekta Oncology Systems) and the On-Board Imager (OBI, Varian Medical Systems) cone-beam CT (CBCT) systems. To this end, two uniform-density cylindrical acrylic phantoms with diameters of 18 cm (head phantom) and 30 cm (body phantom) were used for all measurements. Both phantoms included ion chamber placement holes in the center and at periphery (2 cm below surface). For the XVI unit, the four standard manufacturer-supplied protocols were measured. For the OBI unit, the full bow tie and half bow tie (and no bow tie) filters were used in combination with the two scanning modes; namely, full-fan and half-fan. The total milliampere x seconds (mA s) setting was also varied for each protocol to establish the linear relationship between the dose deposited and the mA s used (with all other factors being held constant). Half-value layers in aluminum (Al) were also measured for beam characteristic determination. For the XVI unit, the average dose ranged from 0.1 to 3.5 cGy with the highest dose measured using the "prostate" protocol with the body phantom. For the OBI unit, the average dose ranged from 1.1 to 8.3 cGy with the highest dose measured using the full-fan protocol with the head phantom. The measured doses were highly linear as a function of mA s, for both units, where the measurement points followed a linear relationship very closely with R2 > 0.99 for all cases. Half-value layers were between 4.6- and 7.0-mm-Al for the two CBCT units where XVI generally had more penetrating beams at the similar kVp settings. In conclusion, a comprehensive series of dose measurements were performed on the XVI and the OBI CBCT units. In the process, many of the important similarities and differences between the two systems were observed and summarized in this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.