Mg-based materials are considered to be the most machinable of all materials due to their good machinability. Though conventional machining of Mg-based materials is a topic that has been widely discussed, they are associated with ignition issues. Ignition risk in conventional machining of Mg-based materials thus cannot be denied and should be avoided. Literature has witnessed ignition risk when machining temperature reaches above 450°C during turning and milling processes, and some cases are reported with fire hazard. In order to obtain the safest machining atmosphere, abrasive water jet machining, a most desired machining technology for machining Mg-based materials, is discussed in the present chapter. The text covers ignition risk in conventional machining of Mg-based materials, an overview of non-traditional methods for machining Mg-based materials, advantages of abrasive water jet machining over other methods, abrasive water jet linear cutting of Mg alloys and composites, and drilling of Mg alloys. Experimental investigations are carried out to know the effect of abrasive water jet process parameters on machining Mg alloys and Mg nanocomposites. Surface topography of cut surfaces is analyzed. Suitability of abrasive water jet in drilling Mg alloys is justified by comparing results with holes drilled by conventional drilling and jig boring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.