Nickel-based superalloys have served as the most competitive high temperature structural materials under highly stressed and aggressive operating conditions in a variety of applications for more than 60 years. The most demanding among all the applications has been the gas turbine aerofoil castings of modern aero-engines. These turbine parts operate in extremely aggressive environment of high velocity hot combustion gas-air mixture carrying highly corrosive ingredients at high pressure. Gas turbine aerofoil materials should therefore possess adequate resistance to creep, fatigue and aggressive environment. Materials design for such application therefore has been extremely challenging, particularly since the engine designers always aim at higher turbine entry temperature (TET) in order to achieve greater engine thrust and better fuel efficiency. In spite of enormous efforts made in the recent past towards developing ceramics and their composites, Ni-based superalloys continue to be most reliable blade and vane materials offering always the highest TET. This has been possible through better alloy design, improved blade cooling schemes, protective coatings and directional solidification (DS) of either columnar grains or single crystals (SC) along the most favorable <001> texture. During the last six decades, TET has gone up by about 500K. This article covers recent advances in cast Ni-based superalloys, including our own efforts in this direction. Extensive research at DMRL has led to the development of new generation Ni-based superalloys, designated as DMD-4 and DMS-4 for DS and SC processing, respectively. Simultaneously, expertise has been developed to cast DS and SC components for aero-engines. Technology has also been established for pilot scale production of these components.
Articles you may be interested inDual-resonance converse magnetoelectric and voltage step-up effects in laminated composite of long-type 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 piezoelectric single-crystal transformer and Tb0.3Dy0.7Fe1.92 magnetostrictive alloy bars Effect of B on the microstructure and magnetostriction of zoned Dy 0.7 Tb 0.3 Fe 1.95
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.