In this contribution, we present a high-throughput method for the synthesis of titanium nitride nanoparticles. The technique, based on a continuous-flow nonthermal plasma process, leads to the formation of free-standing titanium nitride particles with crystalline structures and below 10 nm in size. Extinction measurements of the as-synthesized particles show a clear plasmonic resonance in the near-infrared region, with a peak plasmon position varying between 800 and 1000 nm. We have found that the composition can be controllably tuned by modifying the process parameters and that the particle optical properties are strongly dependent upon composition. XPS and STEM/EDS analyses suggest that nitrogen-poor particles are more susceptible to oxidation, and the extinction spectra show a decrease and a red-shift in plasmon peak position as the degree of oxidation increases. The role of oxidation is confirmed by realtime, time-dependent density functional tight binding (RT-TDDFTB) calculations, which also predict a decrease in the localized surface plasmon resonance energy when a single monolayer of oxygen is added to the surface of a titanium nitride nanocrystal. This study highlights the opportunity and challenges presented by this material system. Understanding the processing-properties relationships for alternative plasmonic materials such as titanium nitride is essential for their successful use in biomedical, photocatalytic, and optoelectronic applications.
Using large-scale, real-time, quantum dynamics calculations, we present a detailed analysis of electronic excitation transfer (EET) mechanisms in a multiparticle plasmonic nanoantenna system. Specifically, we utilize real-time, time-dependent, density functional tight binding (RT-TDDFTB) to provide a quantum-mechanical description (at an electronic/atomistic level of detail) for characterizing and analyzing these systems, without recourse to classical approximations. We also demonstrate highly long-range electronic couplings in these complex systems and find that the range of these couplings is more than twice the conventional cutoff limit considered by Förster resonance energy transfer (FRET)-based approaches. Furthermore, we attribute these unusually long-ranged electronic couplings to the coherent oscillations of conduction electrons in plasmonic nanoparticles. This long-range nature of plasmonic interactions has important ramifications for EET; in particular, we show that the commonly used "nearest-neighbor" FRET model is inadequate for accurately characterizing EET even in simple plasmonic antenna systems. These findings provide a real-time, quantum-mechanical perspective for understanding EET mechanisms and provide guidance in enhancing plasmonic properties in artificial light-harvesting systems.
Quantum-mechanical effects can result in qualitatively different (and sometimes completely opposite) results for excitation energy transfer in plasmonic waveguides.
We present a detailed analysis of nonempirically tuned range-separated functionals, with both short- and long-range exchange, for calculating the static linear polarizability and second hyperpolarizabilities of various polydiacetylene (PDA) and polybutatriene (PBT) oligomers. Contrary to previous work on these systems, we find that the inclusion of some amount of short-range exchange does improve the accuracy of the computed polarizabilities and second hyperpolarizabilities. Most importantly, in contrast to prior studies on these oligomers, we find that the lowest-energy electronic states for PBT are not closed-shell singlets, and enhanced accuracy with range-separated DFT can be obtained by allowing the system to relax to a lower-energy broken-symmetry solution. Both the computed polarizabilities and second hyperpolarizabilities for PBT are significantly improved with these broken-symmetry solutions when compared to previously published and current benchmarks. In addition to these new analyses, we provide new large-scale CCSD(T) and explicitly correlated CCSD(T)-F12 benchmarks for the PDA and PBT systems, which comprise the most complete and accurate calculations of linear polarizabilities and second hyperpolarizabilities on these systems to date. These new CCSD(T) and CCSD(T)-F12 benchmarks confirm our DFT results and emphasize the importance of broken-symmetry effects when calculating polarizabilities and hyperpolarizabilties of π-conjugated chains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.