IMPORTANCEHospitalized patients with COVID-19 are at risk for venous and arterial thromboembolism and death. Optimal thromboprophylaxis dosing in high-risk patients is unknown.OBJECTIVE To evaluate the effects of therapeutic-dose low-molecular-weight heparin (LMWH) vs institutional standard prophylactic or intermediate-dose heparins for thromboprophylaxis in high-risk hospitalized patients with COVID-19. DESIGN, SETTING, AND PARTICIPANTSThe HEP-COVID multicenter randomized clinical trial recruited hospitalized adult patients with COVID-19 with D-dimer levels more than 4 times the upper limit of normal or sepsis-induced coagulopathy score of 4 or greater from May 8, 2020, through May 14, 2021, at 12 academic centers in the US.INTERVENTIONS Patients were randomized to institutional standard prophylactic or intermediate-dose LMWH or unfractionated heparin vs therapeutic-dose enoxaparin, 1 mg/kg subcutaneous, twice daily if creatinine clearance was 30 mL/min/1.73 m 2 or greater (0.5 mg/kg twice daily if creatinine clearance was 15-29 mL/min/1.73 m 2 ) throughout hospitalization. Patients were stratified at the time of randomization based on intensive care unit (ICU) or non-ICU status. MAIN OUTCOMES AND MEASURESThe primary efficacy outcome was venous thromboembolism (VTE), arterial thromboembolism (ATE), or death from any cause, and the principal safety outcome was major bleeding at 30 ± 2 days. Data were collected and adjudicated locally by blinded investigators via imaging, laboratory, and health record data. RESULTSOf 257 patients randomized, 253 were included in the analysis (mean [SD] age, 66.7 [14.0] years; men, 136 [53.8%]; women, 117 [46.2%]); 249 patients (98.4%) met inclusion criteria based on D-dimer elevation and 83 patients (32.8%) were stratified as ICU-level care. There were 124 patients (49%) in the standard-dose vs 129 patients (51%) in the therapeutic-dose group. The primary efficacy outcome was met in 52 of 124 patients (41.9%) (28.2% VTE, 3.2% ATE, 25.0% death) with standard-dose heparins vs 37 of 129 patients (28.7%) (11.7% VTE, 3.2% ATE, 19.4% death) with therapeutic-dose LMWH (relative risk [RR], 0.68; 95% CI, 0.49-0.96; P = .03), including a reduction in thromboembolism (29.0% vs 10.9%; RR, 0.37; 95% CI, 0.21-0.66; P < .001). The incidence of major bleeding was 1.6% with standard-dose vs 4.7% with therapeutic-dose heparins (RR, 2.88; 95% CI, 0.59-14.02; P = .17). The primary efficacy outcome was reduced in non-ICU patients (36.1% vs 16.7%; RR, 0.46; 95% CI, 0.27-0.81; P = .004) but not ICU patients (55.3% vs 51.1%; RR, 0.92; 95% CI, 0.62-1.39; P = .71). CONCLUSIONS AND RELEVANCEIn this randomized clinical trial, therapeutic-dose LMWH reduced major thromboembolism and death compared with institutional standard heparin thromboprophylaxis among inpatients with COVID-19 with very elevated D-dimer levels. The treatment effect was not seen in ICU patients.
Rituximab is a chimeric monoclonal antibody capable of depleting B cell populations by targeting the CD20 antigen expressed on the cell surface. Its use in oncology, initially in B cell lymphoma and post-transplant lymphoproliferative disorders, predates its current utility in various fields of medicine wherein it has become one of the safest and most effective antibody-based therapies. It was subsequently found to be effective for rheumatological conditions such as rheumatoid arthritis and antineutrophil cytoplasmic antibody-associated vasculitis. Over the past decade, rituximab has generated a lot of interest in nephrology and has become an emerging or accepted therapy for multiple renal conditions, including systemic lupus erythematosus, lupus nephritis, vasculitis, nephrotic syndrome and in different scenarios before and after kidney transplantation. This review outlines its current use in paediatric nephrology practice, focusing on the knowledge required for general paediatricians who may be caring for children prescribed this medication and reviewing them on a shared care basis.
We present a case of a 59-year-old male with a confirmed diagnosis of small-cell lung cancer (SCLC). He had progressive disease even after four cycles of cisplatin and etoposide chemotherapy and 21 cycles of radiation. He was therefore started on immunotherapy with nivolumab every 2 weeks and ipilimumab every 6 weeks. After 4 months of starting immunotherapy, he reported extreme fatigue, muscular weakness, and poor appetite. He was diagnosed with hypothyroidism, primary adrenal insufficiency, and Lambert-Eaton Myasthenic Syndrome (LEMS). LEMS can be both a paraneoplastic syndrome of SCLC and an adverse effect of immunotherapy. Currently, there is no diagnostic test available to determine if a case of LEMS is a paraneoplastic syndrome or immunotherapy-related adverse effect. In our patient, we felt that LEMS was an immunotherapy-related adverse effect rather being a paraneoplastic syndrome. Our determination was based on the time of onset of muscular weakness, presence of other immunotherapy-mediated adverse events, and the appearance of symptoms in spite of SCLC that had been stabilized on immunotherapy. Accordingly, immunotherapy was stopped and a brief tapering course of steroids was initiated. Our patient’s muscular weakness from LEMS responded well. His clinical improvement persisted even with radiologic progression of disease after cessation of immunotherapy.
The initial report of the multisystem inflammatory syndrome (MIS-C) in children was from the United Kingdom in April 2020; since then, cases have been reported worldwide. Renal involvement has been seen commonly, ranging from 10% to 46%. Kidney involvement following SARS-CoV-2 infection in children with MIS-C is more common than initially thought and is associated with higher morbidity and mortality. There are several reports of a direct viral tropism of COVID-19 and MIS-C associated renal damage. This study's objective was to systematically review the current understanding of kidney involvement in children suffering from MIS-C. Based on our systemic literature search, 19 studies have either partially or fully discussed kidney involvement in MIS-C patients. Furthermore, we discuss the multifactorial pathogenesis contributing to AKI development in MIS-C. Conclusion: The current review gives a Pediatric Nephrologist's perspective of the renal involvement in MIS-C, the incidence of Acute Kidney Injury (AKI), the pathophysiology of AKI in MIS-C, and the proposed therapeutic regimens available, including the need for Kidney replacement therapy for a child with AKI associated with MIS-C. As the disease is rapidly evolving, more detailed clinical prospective studies are required to understand MIS-C and its role in AKI better.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.