T cells are the key players of the adaptive immune response. They coordinate the activation of other immune cells and kill malignant and virus-infected cells. For full activation T cells require at least two signals. Signal 1 is induced after recognition of MHC/peptide complexes presented on antigen presenting cells (APCs) by the clonotypic TCR (T-cell receptor)/CD3 complex whereas Signal 2 is mediated via the co-stimulatory receptor CD28, which binds to CD80/CD86 molecules that are present on APCs. These signaling events control the activation, proliferation and differentiation of T cells. In addition, triggering of the TCR/CD3 complex induces the activation of the integrin LFA-1 (leukocyte function associated antigen 1) leading to increased ligand binding (affinity regulation) and LFA-1 clustering (avidity regulation). This process is termed “inside-out signaling”. Subsequently, ligand bound LFA-1 transmits a signal into the T cells (“outside-in signaling”) which enhances T-cell interaction with APCs (adhesion), T-cell activation and T-cell proliferation. After triggering of signal transducing receptors, adapter proteins organize the proper processing of membrane proximal and intracellular signals as well as the activation of downstream effector molecules. Adapter proteins are molecules that lack enzymatic or transcriptional activity and are composed of protein-protein and protein-lipid interacting domains/motifs. They organize and assemble macromolecular complexes (signalosomes) in space and time. Here, we review recent findings regarding three cytosolic adapter proteins, ADAP (Adhesion and Degranulation-promoting Adapter Protein), SKAP1 and SKAP2 (Src Kinase Associated Protein 1 and 2) with respect to their role in TCR/CD3-mediated activation, proliferation and integrin regulation.
Intrinsically disordered proteins (IDPs) play a vital role in biological processes that rely on transient molecular compartmentation1. In T cells, the dynamic switching between migration and adhesion mandates a high degree of plasticity in the interplay of adhesion and signaling molecules with the actin cytoskeleton2,3. Here, we show that the N-terminal intrinsically disordered region (IDR) of adhesion- and degranulation-promoting adapter protein (ADAP) acts as a multipronged scaffold for G- and F-actin, thereby promoting actin polymerization and bundling. Positively charged motifs, along a sequence of at least 200 amino acids, interact with both longitudinal sides of G-actin in a promiscuous manner. These polymorphic interactions with ADAP become constrained to one side once F-actin is formed. Actin polymerization by ADAP acts in synergy with a capping protein but competes with cofilin. In T cells, ablation of ADAP impairs adhesion and migration with a time-dependent reduction of the F-actin content in response to chemokine or T cell receptor (TCR) engagement. Our data suggest that IDR-assisted molecular crowding of actin above the critical concentration defines a new mechanism to regulate cytoskeletal dynamics. The principle of IDRs serving as molecular sponges to facilitate regulated self-assembly of filament-forming proteins might be a general phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.