Two very important factors which determine the effectiveness of a pump are its volumetric and power efficiencies. Yin and Ghoneim constructed a prototype of a Flexible-Matrix-Composite (FMC) body pump with a very high volumetric efficiency or pumping potential (the relative volume reduction due to a relative input stroke). The high volumetric efficiency is attributed to the geometry of the pump's structure (hyperboloid) as well as the high negative effective Poisson's ratio of the 3-layer [θ/β/θ] flexible-matrix-composite (carbon/polyurethane) laminate adopted for the body of the pump. However, the power efficiency of the pump was not evaluated. It is the objective of the current paper to obtain an estimate of the power efficiency of the pump. The viscoelastic properties of the 3-layer FMC (carbon/polyurethane) laminate are evaluated experimentally using the Dynamic Mechanical Analyzer (DMA) as well as analytically by applying the correspondence principle together with the micro-mechanics approach. In order to obtain an estimate of the power efficiency of the FMC body pump, the axial and shear loss factors of a laminated infinitely long cylindrical tube as functions of β and θ fiber orientation angles are determined employing the Adam and Bacon approach. The analysis engenders high loss factors (greater than 0.4), which suggests that the power efficiency of the proposed pump using the 3-layer carbon/polyurethane laminate may be low.
Two very important factors which determine the effectiveness of a pump are its volumetric and energy efficiencies. Yin and Ghoneim constructed a prototype of a flexible body pump with a very high volumetric efficiency or pumping potential (the relative volume reduction due to a relative input stroke) [1]. The high volumetric efficiency is attributed to the geometry of the pump’s structure (hyperboloid) as well as the high negative effective Poisson’s ratio of the 3-layer ([θ/β/θ]) flexible-matrix-composite (carbon/polyurethane) laminate adopted for the body of the pump. The energy efficiency was not evaluated. An important factor in assessing the energy efficiency of flexible-body pumps is the effective damping (a measure of the energy dissipation per cycle) of the flexible body material. An objective of the current work is to determine the effective damping inherent in the 3-layer laminate, as a function of the two angle orientations θ and β, employed for the design of the flexible body pump. Thereby, the best fiber angle orientation, for the highest volumetric as well as energy efficiency, can be considered. The contribution of this work is twofold: 1) viscoelastic characterization (longitudinal, transverse, and shear complex moduli, as well as the in-plane complex Poisson’s ratio) of the polyurethane/carbon composite, used in the Geo-polymer lab at RIT; the results may be utilized as benchmarks for other researchers using similar carbon/polyurethane in dynamic applications, and 2) provide a comprehensive study of the effect of the two angles θ and β on the effective damping factors of the three-layer laminate. Together with the similar study on the negative Poisson’s ratio [1], a better design of the laminate for the most efficient flexible-body pump performance can be established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.