Human crowd motion is mainly driven by self-organized processes based on local interactions among pedestrians. While most studies of crowd behaviour consider only interactions among isolated individuals, it turns out that up to 70% of people in a crowd are actually moving in groups, such as friends, couples, or families walking together. These groups constitute medium-scale aggregated structures and their impact on crowd dynamics is still largely unknown. In this work, we analyze the motion of approximately 1500 pedestrian groups under natural condition, and show that social interactions among group members generate typical group walking patterns that influence crowd dynamics. At low density, group members tend to walk side by side, forming a line perpendicular to the walking direction. As the density increases, however, the linear walking formation is bent forward, turning it into a V-like pattern. These spatial patterns can be well described by a model based on social communication between group members. We show that the V-like walking pattern facilitates social interactions within the group, but reduces the flow because of its “non-aerodynamic” shape. Therefore, when crowd density increases, the group organization results from a trade-off between walking faster and facilitating social exchange. These insights demonstrate that crowd dynamics is not only determined by physical constraints induced by other pedestrians and the environment, but also significantly by communicative, social interactions among individuals.
MASOES is a 3agent architecture for designing and modeling self-organizing and emergent systems. This architecture describes the elements, relationships, and mechanisms, both at the individual and the collective levels, that favor the analysis of the self-organizing and emergent phenomenon without mathematically modeling the system. In this paper, a method is proposed for verifying MASOES from the point of view of design in order to study the self-organizing and emergent behaviors of the modeled systems. The verification criteria are set according to what is proposed in MASOES for modeling self-organizing and emerging systems and the principles of the wisdom of crowd paradigm and the fuzzy cognitive map (FCM) theory. The verification method for MASOES has been implemented in a tool called FCM Designer and has been tested to model a community of free software developers that works under the bazaar style as well as a Wikipedia community in order to study their behavior and determine their self-organizing and emergent capacities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.