Impaired bone-fracture healing is associated with long-term musculoskeletal disability, pain and psychological distress. Low-intensity pulsed ultrasound (LIPUS) is a non-invasive and side-effect-free treatment option for fresh, delayed- and non-union bone fractures, which has been used in patients since the early 1990s. Several clinical studies, however, have questioned the usefulness of the LIPUS treatment for the regeneration of long bones, including those with a compromised healing. This systematic review addresses the hurdles that the clinical application of LIPUS encounters. Low patient compliance might disguise the effects of the LIPUS therapy, as observed in several studies. Furthermore, large discrepancies in results, showing profound LIPUS effects in regeneration of small-animal bones in comparison to the clinical studies, could be caused by the suboptimal parameters of the clinical set-up. This raises the question of whether the so-called “acoustic dose” requires a thorough characterisation to reveal the mechanisms of the therapy. The adequate definition of the acoustic dose is especially important in the elderly population and patients with underlying medical conditions, where distinct biological signatures lead to a delayed regeneration. Non-industry-funded, randomised, double-blind, placebo-controlled clinical trials of the LIPUS application alone and as an adjuvant treatment for bones with complicated healing, where consistent control of patient compliance is ensured, are required.
Quickly developing precision medicine and patient-oriented treatment strategies urgently require novel technological solutions. The randomly cell-populated scaffolds usually used for tissue engineering often fail to mimic the highly anisotropic characteristics of native tissue. In this work, an ultrasound standing-wave-based tissue engineering acoustophoretic (TEA) set-up was developed to organize murine mesenchymal stromal cells (mMSCs) in an in situ polymerizing 3-D fibrin hydrogel. The resultant constructs, consisting of 17 cell layers spaced at 300 µm, were obtained by continuous wave ultrasound applied at a 2.5 MHz frequency. The patterned mMSCs preserved the structured behavior within 10 days of culturing in osteogenic conditions. Cell viability was moderately increased 1 day after the patterning; it subdued and evened out, with the cells randomly encapsulated in hydrogels, within 21 days of culturing. Cells in the structured hydrogels exhibited enhanced expression of certain osteogenic markers, i.e., Runt-related transcription factor 2 (RUNX2), osterix (Osx) transcription factor, collagen-1 alpha1 (COL1A1), osteopontin (OPN), osteocalcin (OCN), and osteonectin (ON), as well as of certain cell-cycle-progression-associated genes, i.e., Cyclin D1, cysteine-rich angiogenic inducer 61 (CYR61), and anillin (ANLN), when cultured with osteogenic supplements and, for ANLN, also in the expansion media. Additionally, OPN expression was also augmented on day 5 in the patterned gels cultured without the osteoinductive media, suggesting the pro-osteogenic influence of the patterned cell organization. The TEA set-up proposes a novel method for non-invasively organizing cells in a 3-D environment, potentially enhancing the regenerative properties of the designed anisotropic constructs for bone healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.