A series of porphyrin triads (1–4), in which each triad is composed of a Sn(IV) porphyrin and two free-base (or Zn(II)) porphyrins, was synthesized and their self-assembled nanostructures were studied. Depending on the substituent on porphyrin moieties, each triad was self-assembled into a different nanostructure. In particular, the cooperative coordination of 3-pyridyl groups in the Sn(IV) porphyrin with the axial Zn(II) porphyrins in triad 4 leads to forming uniform nanofibers with an average width of 10–22 nm. Other triads without the coordinating interaction between the central Sn(IV) porphyrin and the axial porphyrins formed irregularly shaped aggregates in contrast. The morphologies of nanofiber changed drastically upon the addition of pyrrolidine, in which pyrrolidine molecules break down the self-assembly process by coordinating with the axial Zn(II) porphyrins. All porphyrin aggregates exhibited efficient photocatalytic performances on the degradation of methylene blue dye under visible light irradiation. The degradation efficiencies after 2 h were observed to be between 70% and 95% for the aggregates derived from the four triads.
We present the first large-scale empirical examination of the relation of molecular chemical potentials, μ(0)(mol) = -½(I(0) + A(0))(mol), to the geometric mean (GM) of atomic electronegativities, <χ(0)(at)>(GM) = <½(I(0) + A(0))(at)>(GM), and demonstrate that μ(0)(mol) ≠ -<χ(0)(at)>(GM). Out of 210 molecular μ(0)(mol)values considered more than 150 are not even in the range min{μ(0)(at)} < μ(0)(mol) < max{μ(0)(at)} spanned by the μ(0)(at) = -χ(0)(at) of the constituent atoms. Thus the chemical potentials of the large majority of our molecules cannot be obtained by any electronegativity equalization scheme, including the "geometric mean equalization principle", ½(I(0) + A(0))(mol) = <½(I(0) + A(0))(at)>(GM). For this equation the root-mean-square of relative errors amounts to SE = 71%. Our results are at strong variance with Sanderson's electronegativity equalization principle and present a challenge to some popular practice in conceptual density functional theory (DFT). The influences of the "external" potential and charge dependent covalent and ionic binding contributions are discussed and provide the theoretical rationalization for the empirical facts. Support is given to the warnings by Hinze, Bader et al., Allen, and Politzer et al. that equating the chemical potential to the negative of electronegativity may lead to misconceptions.
A series of porphyrin triads (1–6), based on the reaction of trans-dihydroxo-[5,15-bis(3-pyridyl)-10,20-bis(phenyl)porphyrinato]tin(IV) (SnP) with six different phenoxy Zn(II)-porphyrins (ZnLn), was synthesized. The cooperative metal–ligand coordination of 3-pyridyl nitrogens in the SnP with the phenoxy Zn(II)-porphyrins, followed by the self-assembly process, leads to the formation of nanostructures. The red-shifts and remarkable broadening of the absorption bands in the UV–vis spectra for the triads in CHCl3 indicate that nanoaggregates may be produced in the self-assembly process of these triads. The emission intensities of the triads were also significantly reduced due to the aggregation. Microscopic analyses of the nanostructures of the triads reveal differences due to the different substituents on the axial Zn(II)-porphyrin moieties. All these nanomaterials exhibited efficient photocatalytic performances in the degradation of rhodamine B (RhB) dye under visible light irradiation, and the degradation efficiencies of RhB in aqueous solution were observed to be 72~95% within 4 h. In addition, the efficiency of the catalyst was not impaired, showing excellent recyclability even after being applied for the degradation of RhB in up to five cycles.
Two porphyrin-based coordination frameworks, [Ag2(TPyP)Sn(OH)2](NO3)2●(solv)x (1) and [Ag2(TPyP)Sn(INA)2](OTf)2●(CH3CN)2 (2) (INA = isonicotinato anion, OTf = CF3SO3-), were constructed by the self-assembly of hexacoordinated (meso-tetra-(4-pyridyl)porphyrinato)Sn(IV) building blocks with Ag(I) ions. They...
We report a supramolecular system with tin(iv) porphyrin, viologen, and cucurbit[8]uril, which is capable of fluorescent chemosensing for aromatic compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.